Supporting information

Alkaline earth metal ion coordination increases radical scavenging

efficiency of kaempferol

Ling-Ling Qian[†], Yao Lu[†], Yi Xu[†], Zhi-Yin Yang[†], Jing Yang[†], Yi-Ming Zhou[†], Rui-Min Han^{†,*}, Jian-Ping Zhang[†], Leif H. Skibsted[‡]

†Department of Chemistry, Renmin University of China, Beijing, 100872‡Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958Frederiksberg C, Denmark

Figure S1. Absorption spectra of 50 μ M Kaem in the presence of 500 μ M Mg(CH₃COO)₂ with addition of 50, 100, 150, 200, 250, 500 and 1000 μ M CH₃COOH.

Figure S2. Absorption spectra of 5 μ M β -Car with 50 μ M Kaem and 500 μ M Mg/Ca/Sr/Ba(II) after 532 nm laser radiation (10 Hz, 4 mJ/pulse) for 5 min. Inset: enlarged view of spectra at 870~950 nm.

Figure S3. Optimized structures of (1) Mg(II)-Kaem₂, (2) Ca(II)-Kaem₂, (3) Sr(II)-Kaem₂, (4) Ba(II)-Kaem₂ complexes viewed from (a) perpendicular to the plane of one Kaem ligand and parallel to the other Kaem , and from (b) parallel to the two planes of the two Kaem ligands.

Table S1. IR spectra peak (cm⁻¹) for 1.0 mM Kaem/Api, and solids prepared by removing solvent from ethanol solutions of Kaem/Api and $M(CH_3COO)_2$ with ratios of 1:10. M= Mg(II), Ca(II), Sr(II), Ba(II).

Compound	v(C=O)	v(C=C)	v(C-OH)	v(C-O-C)	v(M-O)
Kaem	1657	1613	1372	1243	-
Kaem-Mg(II)	1648	1602	1367	1226	609
Kaem-Ca(II)	1650	1615	1365	1223	582
Kaem-Sr(II)	1653	1608	1367	1221	463
Kaem-Ba(II)	1654	1607	1370	1224	644
Арі	1659	1605	1357	1243	
Api-Mg(II)	1640	1595	1357	1248	605
Api-Ca(II)	1659	1605	1377	1243	
Api-Sr(II)	1659	1605	1364	1243	
Api-Ba(II)	1659	1605	1367	1243	

Table S2. Experimental (Exp.) and calculated (Cal.) ESI mass spectra (m/z) for solids prepared by removing solvent from ethanol solutions of 1000 μ M Kaem/Api and M(CH₃COO)₂ with ratios of 1:0.5 and 1:1, M= Mg(II), Ca(II),Sr(II), Ba(II).

Exp. (m/z)	Cal. (m/z)	Kaem:M(II) =1:0.5	Exp. (m/z)	Cal. (m/z)	Kaem/Api:M(II)=1:1
595	595/596/597	Mg-(Kaem-H) ₂ +H ⁺	363/364/365	363/364/365	Mg-(Kaem-2H) +Na ⁺ +CH ₃ OH
613/614/615	613/614/615	Mg-(Kaem-H) ₂ +H ⁺ +H ₂ O	379/380/381	379/380/381	Mg-(Kaem-2H)+ K ⁺ +CH ₃ OH
617	617/618/619	Mg-(Kaem-H) ₂ +Na ⁺	147/148	147/148/148	[Mg-(Api-H)] ⁺ +H ⁺
627	627/628/629	Mg-(Kaem-H) ₂ +CH ₃ OH+H ⁺	198	198/199/199	[Mg-(Api-H)]++K++2CH ₃ OH
665/667	665/666/667	Mg-(Kaem-H) ₂ +CH ₃ OH+K ⁺	217	217/217/218	2[Mg-(Api-H)] ⁺ +H ⁺ +2CH ₃ OH
667	665/666/667	Ca-(Kaem-H) ₂ +CH ₃ OH+Na ⁺	339/340/341	339/340/341	[Mg-(Api-H)] ⁺ + C ₂ H ₅ OH
649	649/650/651	Ca-(Kaem-H) ₂ + K ⁺	325/326/327	325/326/327	[Mg-(Api-H)] ⁺ + CH ₃ OH
633	633/634/635	Ca-(Kaem-H) ₂ +Na ⁺			
657/658/659	657/658/659	Ca-(Kaem-H) ₂ +H++C ₂ H ₅ OH			
652/653	651/652/653	Ca-(Kaem-H) ₂ +Na ⁺ +H ₂ O			
659/657	659/660/657	Sr-(Kaem-H) ₂ +H ⁺			
681	681/682/679	Sr-(Kaem-H) ₂ +Na ⁺			
709/710/708	709/710/708	Ba-(Kaem-H) ₂ +H ⁺			
745	745/746/744	Ba-(Kaem-H) ₂ +2H ₂ O+H ⁺			
759/760/758	759/760/758	Ba-(Kaem-H) ₂ +H ₂ O+CH ₃ OH +	H^+		
763/764/762	763/764/762	Ba-(Kaem-H) ₂ +CH ₃ OH +Na ⁺			

Table S3. Fractions (F, %) of Kaem and AEM(II)-kaempferol complexes in ethanol and in ethanol:chloroform (7/3) at indicated varying ratios.

ratio	F(<i>F(%)</i> in e			
	Kaem/Mg-Kaem₂/ Mg-Kaem	Kaem/ Ca-Kaem ₂	Kaem/ Sr-Kaem ₂	Kaem/Ba-Kaem ₂
1:0.2	0.64/0.34/0.02	0.66/0.34	0.62/0.38	0.63/0.37
	(0.70/0.28/0.02)	(0.65/0.35)	(0.65/0.35)	(0.66/0.34)
1:0.5	0.28/0.62/0.1	0.37/0.63	0.23/0.77	0.29/0.71
	(0.42//0.51/0.07)	(0.34/0.66)	(0.34/0.66)	(0.36/0.64)
1:1	0.12/0.64/0.24	0.23/0.77	0.12/0.88	0.16/0.84
	(0.26/0.60/0.14)	(0.20/0.80)	(0.20/0.80)	(0.21/0.79)
1:2	0.07/0.55/0.38	0.15/0.85	0.07/0.93	0.10/0.90
	(0.16/0.62/0.22)	(0.13/0.87)	(0.13/0.87)	(0.14/0.86)
1:5	0.03/0.39/0.58	0.09/0.91	0.04/0.96	0.06/0.94
	(0.09/0.55/0.36)	(0.08/0.92)	(0.08/0.92)	(0.08/0.92)
1:10	0.02/0.27/0.71	0.06/0.94	0.03/0.97	0.04/0.96
	(0.05/0.46/0.49)	(0.06/0.94)	(0.05/0.95)	(0.06/0.94)
1:20	0.01/0.17/0.82	0.04/0.96	0.02/0.98	0.03/0.97
	(0.03/0.35/0.62)	(0.04/0.96)	(0.04/0.96)	(0.04/0.96)