Supporting Information

Figure $\mathrm{S} 1: \mathrm{N}_{2}$ adsorption-desorption isotherms of the catalysts before (a) and after used (b) in BRM. Colors have been used for better visibility.

Figure S2: (a) SEM of MG30-K; EDX analysis of areas: (b) Z1 and (c) Z2. Adapted from ${ }^{29}$.

Figure S3: Conversion of CH_{4} and CO_{2}, and H_{2} to CO ratio versus temperature:
(a) effect of P and (b) effect of $\mathrm{CH}_{4}: \mathrm{CO}_{2}: \mathrm{H}_{2} \mathrm{O}$ ratios. Reproduced from ${ }^{9}$.

Figure S4: XRD patterns of catalyst used in a previous work ${ }^{10}$.

Figure S5: XPS spectra and deconvolution of the (a) O1s region and (b) Ni2p region of the different samples.

Table S1: Phases identified in the materials used before and after the BRM tests.

Material	Treatment	Phase	2θ positions and reflections	PDF-File ICDD
LDH	-	$\begin{aligned} & \mathrm{Mg}_{2} \mathrm{Al}_{2}(\mathrm{OH})_{8} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O} \\ & \mathrm{AlO}(\mathrm{OH})^{*} \end{aligned}$	$\begin{aligned} & 12.4^{\circ}(003), 29.8^{\circ}(231), 34.9^{\circ}(012), \\ & 38.8^{\circ}(015), 60.9^{\circ}(110) \\ & 26.3^{\circ}(010), 27.0^{\circ}(110), 30.9^{\circ}(101), \\ & 35.0^{\circ}(200), 44.7^{\circ}(210), 65.2^{\circ}(002) \end{aligned}$	43-0072 48-0890
$\mathrm{LDHK}_{2} \mathrm{O}^{20}$	H_{2} reduced	$\begin{aligned} & \mathrm{KOH} \cdot \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{KOH} \\ & \mathrm{Mg}_{2} \mathrm{Al}_{2}(\mathrm{OH})_{8} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O} \\ & \mathrm{AlO}(\mathrm{OH})^{*} \end{aligned}$	$\begin{aligned} & 22.1^{\circ}(110), 30.5^{\circ}(020), 33.3^{\circ}(102), \\ & 45.8^{\circ}(122) \\ & 32.2^{\circ}(002), 32.4^{\circ}(110), 65.2^{\circ}(113) \\ & 12.4^{\circ}(003), 29.8^{\circ}(231), 34.9^{\circ}(012), \\ & 38.8^{\circ}(015), 60.9^{\circ}(110) \\ & 26.3^{\circ}(010), 27.0^{\circ}(110), 30.9^{\circ}(101), \\ & 35.0^{\circ}(200), 44.7^{\circ}(210), 65.2^{\circ}(002) \end{aligned}$	$36-0791$ $21-0645$ $43-0072$ $48-0890$
$\mathrm{LDHK}_{2} \mathrm{O}^{20} \mathrm{Ni}^{17}$	H_{2} reduced	$\begin{aligned} & \mathrm{Ni} \\ & \mathrm{NiO} \\ & \mathrm{Mg}_{6} \mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)(\mathrm{OH})_{16} \cdot 4 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{AlO}(\mathrm{OH})^{*} \end{aligned}$	$\begin{aligned} & 44.5^{\circ}(111), 52.0^{\circ}(200), 76.4^{\circ}(220) \\ & 37.3^{\circ}(111), 43.5^{\circ}(200), 75.3^{\circ}(311), \\ & 79.3^{\circ}(222) \\ & 10.3^{\circ}(006), 21.8^{\circ}(018), 4.7^{\circ}(024), \\ & 48.9^{\circ}(211) \\ & 14.6^{\circ}(010), 28.2^{\circ}(110), 8.4^{\circ}(101), \\ & 49.6^{\circ}(210), 65.4^{\circ}(002) \end{aligned}$	$\begin{aligned} & \hline 70-1849 \\ & 73-1523 \\ & 41-1428 \\ & 49-0133 \end{aligned}$
$\mathrm{LDHK}_{2} \mathrm{O}^{20} \mathrm{Ni}^{17}-\mathrm{u}$	After BRM	Ni NiO $\mathrm{AlO}(\mathrm{OH})^{*}$ $\mathrm{MgAl}_{2} \mathrm{O}_{4}$	$\begin{aligned} & 44.5^{\circ}(111), 52.0^{\circ}(200), 76.4^{\circ}(220) \\ & 37.3^{\circ}(111), 43.2^{\circ}(200), 75.3^{\circ}(311), \\ & 79.1^{\circ}(222) \\ & 14.8^{\circ}(010), 28.7^{\circ}(110), 49.2^{\circ}(210), \\ & 65.7^{\circ}(002) \\ & 30.9^{\circ}(220), 36.8^{\circ}(311), 65.4^{\circ}(440) \end{aligned}$	$\begin{aligned} & 70-1849 \\ & 73-1523 \\ & 49-0133 \\ & 77-1193 \end{aligned}$

* Due to the high aluminum content, PURAL MG30 contains a significant amount of boehmite (Product information, Sasol Germany (formerly Condea), Hamburg 2012, http://www.sasoltechdata.com/tds/PURAL-MG.pdf)

Materials, characterization, and reaction studies.

The sorbent PURAL MG30 (aluminium magnesium hydroxide, 70\% Al2O3) and PURAL MG30 K2CO3 (aluminium magnesium hydroxide, $70 \% \mathrm{Al2O}$; potassium carbonate, $20 \% \mathrm{~K}$) was provided by CONDEA Chemie Germany (now SASOL).

The support material was impregnated with nickel(II) nitrate hexahydrate (VWR international Merck group Germany).

Tubular stainless steel fixed-bed continuous down-flow reactor was an home-made equipment produced by Neves\&neves Lda. Trofa in Portugal.

The heating furnace with a PID temperature controller is a product from Termolab-Fornos Electricos Lda, Águeda in Portugal.

An HPLC pump (Merck L-2130 (Hitachi, Tokyo, Japan) was used to introduce the liquid water inside the reactor.

The composition of the outgoing off-gas stream was determined with a gas chromatograph (GC 1000, Dani Chromatographs) equipped with an on-line multiport 16 -valve system for sample injection (Valco Instruments Company Inc.), a capillary column (Carboxen 1010 Plot, Supelco) and a thermal conductivity detector.

The gases were furnished by Air Liquid Portugal with the following purities: methane N35 (99.95\%), hydrogen N35 (99.95\%), carbon dioxide N48 (99.998\%), nitrogen N35 (99.95\%), carbon monoxide N35 (99.95\%) and helium ALPHAGAZ 2 (99.9998\%).

