Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Figure S1: N_2 adsorption-desorption isotherms of the catalysts before (a) and after used (b) in BRM. Colors have been used for better visibility.

Figure S2: (a) SEM of MG30-K; EDX analysis of areas: (b) Z1 and (c) Z2. Adapted from ²⁹.

Figure S3: Conversion of CH₄ and CO₂, and H₂ to CO ratio versus temperature: (a) effect of P and (b) effect of CH₄:CO₂:H₂O ratios. Reproduced from ⁹.

Figure S4: XRD patterns of catalyst used in a previous work ¹⁰.

Figure S5: XPS spectra and deconvolution of the (a) O1s region and (b) Ni2p region of the different samples.

Material	Treatment	Phase	2θ positions and reflections	PDF-File ICDD
LDH	-	Mg ₂ Al ₂ (OH) ₈ CO ₃ ·xH ₂ O	12.4° (003), 29.8° (231), 34.9° (012), 38.8° (015), 60.9° (110)	43-0072
		AlO(OH)*	26.3° (010), 27.0° (110), 30.9° (101), 35.0° (200), 44.7° (210), 65.2° (002)	48-0890
LDHK ₂ O ²⁰	H ₂ reduced	KOH·H ₂ O	22.1° (110), 30.5° (020), 33.3° (102), 45.8° (122)	36-0791
		КОН	32.2° (002), 32.4° (110), 65.2° (113)	21-0645
		Mg ₂ Al ₂ (OH) ₈ CO ₃ ·xH ₂ O	12.4° (003), 29.8° (231), 34.9° (012), 38.8° (015), 60.9° (110)	43-0072
		AlO(OH)*	26.3° (010), 27.0° (110), 30.9° (101), 35.0° (200), 44.7° (210), 65.2° (002)	48-0890
LDHK ₂ O ²⁰ Ni ¹⁷	H ₂ reduced	Ni	44.5° (111), 52.0° (200), 76.4° (220)	70-1849
		NiO	37.3° (111), 43.5° (200), 75.3° (311), 79.3° (222)	73-1523
		$Mg_6Al_2(CO_3)(OH)_{16} \cdot 4H_2O$	10.3° (006), 21.8° (018), 4.7° (024), 48.9° (211)	41-1428
		AlO(OH)*	14.6° (010), 28.2° (110), 8.4° (101), 49.6° (210), 65.4° (002)	49-0133
LDHK ₂ O ²⁰ Ni ¹⁷ -u	After BRM	Ni	44.5° (111), 52.0° (200), 76.4° (220)	70-1849
		NiO	37.3° (111), 43.2° (200), 75.3° (311), 79.1° (222)	73-1523
		AlO(OH)*	14.8° (010), 28.7° (110), 49.2° (210), 65.7° (002)	49-0133
		MgAl ₂ O ₄	30.9° (220), 36.8° (311), 65.4° (440)	77-1193

Table S1: Phases identified in the materials used before and after the BRM tests.

* Due to the high aluminum content, PURAL MG30 contains a significant amount of boehmite (*Product information*,

Sasol Germany (formerly Condea), Hamburg 2012, http://www.sasoltechdata.com/tds/PURAL-MG.pdf)

Materials, characterization, and reaction studies.

The sorbent PURAL MG30 (aluminium magnesium hydroxide, 70% Al2O3) and PURAL MG30 K2CO3 (aluminium magnesium hydroxide, 70% Al2O3; potassium carbonate, 20% K) was provided by CONDEA Chemie Germany (now SASOL).

The support material was impregnated with nickel(II) nitrate hexahydrate (VWR international – Merck group Germany).

Tubular stainless steel fixed-bed continuous down-flow reactor was an home-made equipment produced by Neves&neves Lda. Trofa in Portugal.

The heating furnace with a PID temperature controller is a product from Termolab-Fornos Electricos Lda, Águeda in Portugal.

An HPLC pump (Merck L-2130 (Hitachi, Tokyo, Japan) was used to introduce the liquid water inside the reactor.

The composition of the outgoing off-gas stream was determined with a gas chromatograph (GC 1000, Dani Chromatographs) equipped with an on-line multiport 16-valve system for sample injection (Valco Instruments Company Inc.), a capillary column (Carboxen 1010 Plot, Supelco) and a thermal conductivity detector.

The gases were furnished by Air Liquid Portugal with the following purities: methane N35 (99.95%), hydrogen N35 (99.95%), carbon dioxide N48 (99.998%), nitrogen N35 (99.95%), carbon monoxide N35 (99.95%) and helium ALPHAGAZ 2 (99.9998%).