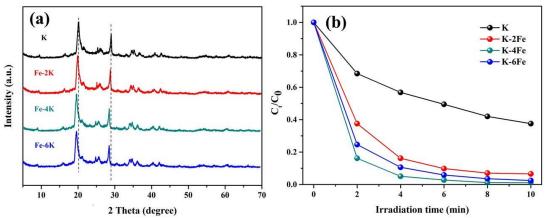
Supporting Information for


Enhancement of photo-Fenton catalytic activity with the assistance of Oxalic acid on the Kaolin-FeOOH system for degradation of organic dyes

Chun Xiao, Su Li, Fuhao Yi, Bo Zhang*, Dan Chen, Yang Zhang, Hongxin Chen and Yueli Huang

College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, China

*Corresponding author: E-mail: david_zhang200309@163.com

Supplementary Figures

Fig. S1 (a) XRD patterns of the K-xFe catalyst samples (x= 0, 2, 4, 6), (b) the RhB degradation of the K-xFe catalyst samples (x= 0, 2, 4, 6) ((catalysts) = 1.0 g/L, pH = 7.2, (oxalic acid) = 1.0 mM, (H₂O₂) = 0.5 mM).

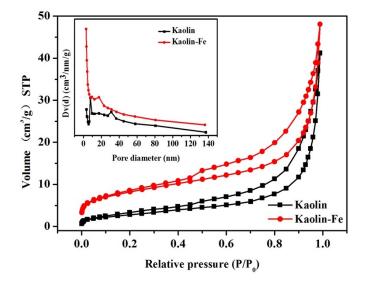
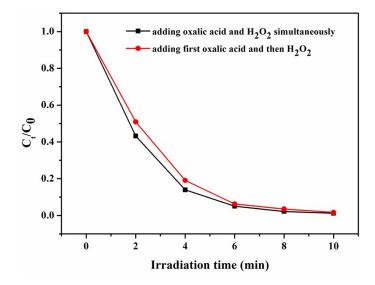
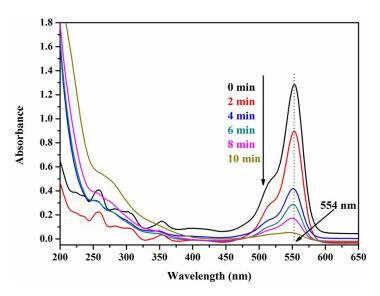




Fig. S2 N₂ adsorption-desorption isotherms of the kaolin and K-Fe.

Fig. S3 The effect of the adding order of H_2O_2 and oxalic acid on the degradation of RhB ((K-Fe) = 1.0 g/L, pH = 7.2, (oxalic acid) = 1.0 mM, (H₂O₂) = 0.5 mM).

Fig. S4 UV-vis absorption spectra of RhB of different irradiation time over the K-Fe catalyst $((K-Fe) = 1.0 \text{ g/L}, \text{pH} = 7.2, (\text{oxalic acid}) = 1.0 \text{ mM}, (H_2O_2) = 0.5 \text{ mM}).$

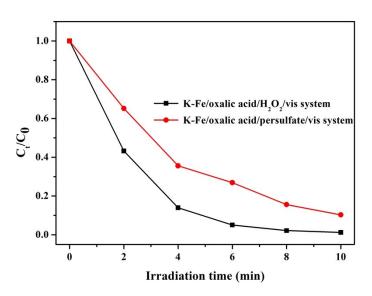


Fig. S5 The effect of different oxidants on the degradation of RhB ((K-Fe) = 1.0 g/L, pH = 7.2, (oxalic acid) = 1.0 mM, (H₂O₂ or persulfate) = 0.5 mM).

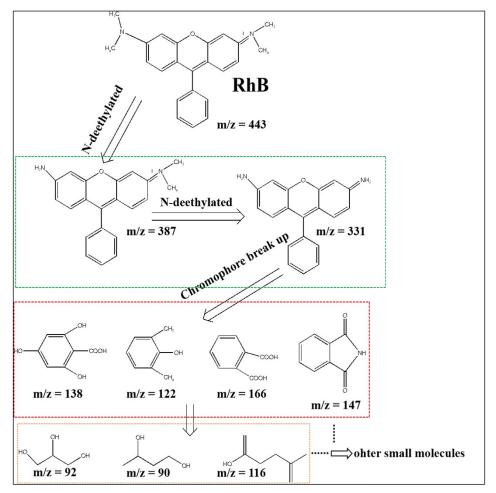


Fig.S6 A possible degradaiton pathways of RhB in K-Fe/oxalic acid/H₂O₂/vis system.

Table S1 The variation of pH value at different irradiation time.					
Irradiation time (min)	The pH value of the solution				
0	3.3	5.7	7.2	9.6	10.8
2	2.6	3.9	5.6	7.2	8.0
4	2.8	4.2	5.2	6.3	6.9
6	3.3	4.4	4.9	6.1	6.3
8	3.5	4.3	4.7	5.9	6.4
10	3.4	4.2	4.6	5.8	6.2