Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Table S1 Performance description of ten metal oxide sensors in PEN3 electronic nose.

No.	Sensor code	Douforman as description	Reference
		Performance description	(mL/m^3)
1	W1C	Aromatic and benzene compounds	C ₇ H ₈ , 10
2	W5S	Broad range sensitivity, sensitive to nitrogen oxides	NO ₂ , 1
3	W3C	Ammonia, sensitive to aromatic compounds	$C_6H_6, 10$
4	W6S	Mainly hydrogen, selectively	H ₂ , 100
5	W5C	Alkane, aromatic compounds	$C_3H_8, 1$
6	W1S	Sensitive to methane	CH ₄ , 100
7	W1W	Sensitive to many organic compounds	H_2S , 1
8	W2S	Alcohol, sensitive to aromatic compounds with	CO 100
		broad range	CO, 100
9	W2W	Aromatic and sulfur organic compounds	H_2S , 1
10	W3S	Reacts on high concentrations, sensitive to several	CH ₄ , 100
		compounds	

Table S2 Quantified data of volatile flavor collected from the control mackerel during 0–100 days of frozen storage.

Sensor code	0 day	20 day	40 day	60 day	80 day	100 day
W1C	$1.3 \pm 0.1a$	$2.9 \pm 0.2b$	$2.9 \pm 0.2b$	$4.5 \pm 0.1c$	$6.0 \pm 0.3 d$	$8.0 \pm 0.4e$
W5S	$8.7 \pm 0.1c$	$9.7 \pm 0.2d$	$9.1 \pm 0.2c$	$8.4 \pm 0.2c$	$6.5 \pm 0.2b$	$5.0 \pm 0.1a$
W3C	$1.3 \pm 0.1a$	$2.7 \pm 0.2b$	$3.0 \pm 0.1b$	$4.3 \pm 0.2c$	$6.5 \pm 0.2 d$	$8.2 \pm 0.3e$
W6S	$0.6 \pm 0.1a$	$2.1 \pm 0.1b$	$2.2 \pm 0.2b$	$3.5 \pm 0.2c$	$7.1 \pm 0.3d$	$8.7 \pm 0.3e$
W5C	$1.0 \pm 0.1a$	$2.6 \pm 0.2b$	$3.0 \pm 0.3b$	$4.0\pm0.2c$	$6.8 \pm 0.4 d$	$8.5 \pm 0.3e$
W1S	$1.0 \pm 0.1a$	$2.7 \pm 0.1b$	$3.0 \pm 0.2b$	$4.1\pm0.1c$	$4.3 \pm 0.2c$	$4.3 \pm 0.2c$
W1W	$0.9 \pm 0.1a$	$3.0\pm0.2b$	$3.2 \pm 0.1b$	$4.7 \pm 0.2c$	$7.8 \pm 0.3d$	$9.2 \pm 0.3e$
W2S	$0.7 \pm 0.1a$	$2.1 \pm 0.2b$	$2.8 \pm 0.3b$	$3.8 \pm 0.2c$	$8.5 \pm 0.4d$	9.3 ± 0.4 d
W2W	$0.9 \pm 0.1a$	$2.8 \pm 0.2b$	$3.2 \pm 0.3b$	$4.7 \pm 0.1c$	$9.0 \pm 0.3d$	$10.0 \pm 0.4d$
W3S	$0.8 \pm 0.1a$	$2.4\pm0.1b$	$3.0\pm0.2c$	$4.0\pm0.1d$	$8.5 \pm 0.3e$	$9.8 \pm 0.2f$

Data represent the means \pm standard deviation of 3 replicates. The means with different uppercase letters in the same row were significantly different at P < 0.05.

Table S3 Quantified data of volatile flavor collected from the control, 1.5% CO soaked-, 3.0% CO soaked-, and 4.5% CO soaked-samples (B) after 100 days of frozen storage.

Sensor code	control	1.5% CO	3.0% CO	4.5% CO
W1C	$8.0 \pm 0.2c$	$7.3 \pm 0.2b$	$6.1 \pm 0.2a$	$5.9 \pm 0.2a$
W5S	$5.0 \pm 0.1a$	$5.7 \pm 0.2a$	7.6 ± 0.3 b	7.0 ± 0.3 b
W3C	8.2 ± 0.3 d	$7.2 \pm 0.1c$	5.2 ± 0.1 b	$4.5 \pm 0.1a$
W6S	$8.7 \pm 0.3b$	$8.5 \pm 0.3b$	$4.6 \pm 0.2a$	$5.2 \pm 0.2a$
W5C	$8.5 \pm 0.2c$	$7.0 \pm 0.2b$	$5.3 \pm 0.2a$	$5.0 \pm 0.2a$
W1S	$4.3 \pm 0.2a$	$4.5 \pm 0.1a$	$4.0 \pm 0.1a$	$4.2 \pm 0.1a$
W1W	$9.2 \pm 0.2c$	$7.8 \pm 0.3b$	$6.2 \pm 0.1a$	$6.8 \pm 0.3a$
W2S	$9.3 \pm 0.2c$	$8.6 \pm 0.2b$	$5.8 \pm 0.2a$	$5.4 \pm 0.1a$
W2W	10.0 ± 0.3 c	$8.5 \pm 0.2b$	$6.6 \pm 0.2a$	$6.0 \pm 0.2a$
W3S	$9.8 \pm 0.2c$	$8.0 \pm 0.1b$	$5.0 \pm 0.3a$	$5.1 \pm 0.2a$

Data represent the means \pm standard deviation of 3 replicates. The means with different uppercase letters in the same row were significantly different at P < 0.05.