Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information:

:

A carbon nanotube approach for efficient thermally insulating material with high mechanical stability and fire-retardancy

Hang Zhan, Qiang Qiang Shi, Guang Wu, Jian Nong Wang*

School of Mechanical and Power Engineering East China University of Science and Technology, Shanghai 200237, China

* E-mail: jnwang@ecust.edu.cn

Figure S1. SEM images of the sponge at different magnifications

Figure S2. SEM image of the sponge viewed from the side wall

Figure S3. SEM image of the CNT sponge preform. The diameter determination is marked.

Figure S4. Compressive cycling from 0% to 90% strain

Figure S5. (a) CNT sponge immersed in liquid nitrogen. (b) CNT sponge of the same taken out from the liquid nitrogen

Figure S6. Water contact angle measurement of CNT sponge

Sample	Thermal conductivity	Reference
	$(\mathbf{m}\mathbf{W}\cdot\mathbf{m}^{-1}\cdot\mathbf{K}^{-1})$	
Wood composites	$\lambda_{axial} = 320; \lambda_{radial} = 150$	1
Expanded polystyrene	30~40	2
Cellulose	40~50	3
Polymer/clay aerogel	45	3
Fiber glass	33~44	3
Polyurethane	20~30	4
Porous aramids	28	5
Silica aerogels	17~40	6
CNF-GO-BA-SEP foam	15~18	7
Graphene - carbon sphere	9~19	8
Graphene/CNT hybrid aerofoam	19.2~41.4	9
3D Graphene scaffolds	12.6~31.4	10
Graphene based foam	>100	11
CNT network	>100	12
CNT sponge	9.6~14	This work

Table S1. Thermal conductivity coefficients of representative TIMs reported in the literature

References

- 1. T. Li, M. Zhu, Z. Yang, J. Song, J. Dai, Y. Yao, W. Luo, G. Pastel, B. Yang and L. Hu, Advanced Energy Materials, 2016, 6, 1601122.
- 2. N. Leventis, C. Chidambareswarapattar, D. P. Mohite, Z. J. Larimore, H. Lu and C. Sotiriou-Leventis, *J. Mater. Chem.*, 2011, **21**, 11981-11986.
- 3. B. P. Jelle, Energy and Buildings, 2011, 43, 2549-2563.
- 4. D. M. S. Al-Homoud, Build. Environ., 2005, 40, 353-366.

- 5. M. D. Gawryla, M. Nezamzadeh and D. A. Schiraldi, Green Chemistry, 2008, 10, 1078-1081.
- 6. N. Hüsing and U. Schubert, Angew. Chem. Int. Ed., 1998, 37, 22-45.
- B. Wicklein, A. Kocjan, G. Salazar-Alvarez, F. Carosio, G. Camino, M. Antonietti and L. Bergström, *Nature Nanotechnology*, 2015, 10, 277-283.
- Q. Peng, Y. Qin, X. Zhao, X. Sun, Q. Chen, F. Xu, Z. Lin, Y. Yuan, Y. Li, J. Li, W. Yin, C. Gao, F. Zhang, X. He and Y. Li, ACS Applied Materials & Interfaces, 2017, 9, 44010-44017.
- 9. W. S. Kim, S. Y. Moon, J. Koyanagi and T. Ogasawara, Adv. Compos. Mater, 2016, 25, 105-113.
- Q. Zhang, M. Hao, X. Xu, G. Xiong, H. Li and T. S. Fisher, ACS Applied Materials & Interfaces, 2017, 9, 14232-14241.
- 11. M. T. Pettes, H. Ji, R. S. Ruoff and L. Shi, Nano Letters, 2012, 12, 2959-2964.
- R. S. Prasher, X. J. Hu, Y. Chalopin, N. Mingo, K. Lofgreen, S. Volz, F. Cleri and P. Keblinski, *Physical Review Letters*, 2009, **102**, 105901.