Unexpected Cyclization of *ortho*-Nitrochalcones into 2-Alkylideneindolin-3-ones

Nicolai A. Aksenov,*^a Dmitrii A. Aksenov,^a Nikolai A. Arutiunov,^a Daria S. Aksenova,^a Alexander V. Aksenov,^a and Michael Rubin*^{a,b}

- a. Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation.
- b. Department of Chemistry, University of Kansas, 1567 Irving Hill Rd., Lawrence, KS 66045-7582, USA. Tel: +1-785-864- 5071, E-mail: mrubin@ku.edu

Supporting Information

Table of contents

¹ H and ¹³ C NMR spectral charts for starting chalcones	S2
¹ H and ¹³ C NMR spectral charts for (<i>E</i>)-2-(3-oxoindolin-2-ylidene)-2-arylacetonitriles	S38
¹ H and spectral charts of intermediate 5aa (in crude reaction mixture)	
HRMS spectral charts for starting chalcones	S74
HRMS spectral charts for (E)-2-(3-oxoindolin-2-ylidene)-2-arylacetonitriles	S80
HRMS spectral chart for intermediate 5aa	S85
X-Ray crystallography data	S86
References	S93

¹H and ¹³C NMR spectral charts for starting chalcones

¹H and ¹³C NMR spectral charts for (*E*)-2-(3-oxoindolin-2-ylidene)-2-arylacetonitriles

¹H and spectral charts of intermediate 5aa (in crude reaction mixture)

HRMS spectral charts for (E)-2-(3-oxoindolin-2-ylidene)-2-arylacetonitriles

HRMS spectral chart for intermediate 5aa

X-Ray crystallography data

Figure S1. ORTEP drawing of the crystal structure (left) and microphotography of the single crystal of compound **2ad** used for X-Ray diffraction analysis (right)

Identification code	ANNA1120 ISAT(da FINAL) 3
Empirical formula	C ₁₈ H ₁₄ N ₂ O
Formula weight	274.31
Temperature/K	293(2)
Crystal system	monoclinic
Space group	C2/c
a/Å	20.6798(2)
b/Å	11.21770(10)
c/Å	12.58050(10)
$\alpha/^{\circ}$	90
β/°	102.8320(10)
$\gamma/^{\circ}$	90
Volume/Å ³	2845.53(5)
Z	8
$\rho_{calc}g/cm^3$	1.281
µ/mm ⁻¹	0.640
F(000)	1152.0
Crystal size/mm ³	$0.394 \times 0.208 \times 0.107$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	8.772 to 152.69
Index ranges	$-26 \le h \le 23, -14 \le k \le 14, -12 \le l \le 15$
Reflections collected	15274
Independent reflections	2976 [$R_{int} = 0.0160, R_{sigma} = 0.0101$]
Data/restraints/parameters	2976/0/195
Goodness-of-fit on F ²	1.045
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0390, wR_2 = 0.1083$
Final R indexes [all data]	$R_1 = 0.0408, wR_2 = 0.1106$
Largest diff. peak/hole / e Å ⁻³	0.20/-0.16

Table S1 Crystal data and structure refinement for compound 2ad.

Atom	x	У	Z	U(eq)
O1	4123.7(5)	4620.1(9)	2737.8(6)	56.5(2)
N1	4063.9(5)	5158.3(9)	5445.9(7)	44.9(2)
C8	4260.1(5)	6266.7(10)	5135.4(8)	41.1(2)
C1	3989.5(5)	4360.9(10)	4599.3(8)	39.8(2)
C2	4148.6(5)	5034.5(10)	3643.8(8)	41.2(2)
С9	3785.7(6)	3211.8(10)	4590.0(8)	41.0(2)
C11	3524.5(5)	2619.2(10)	5458.7(8)	40.6(2)
N2	3853.6(7)	1795.1(11)	3010.0(9)	67.2(3)
C3	4303.2(5)	6241.0(10)	4043.8(8)	42.1(2)
C16	3151.8(6)	3247.7(10)	6067.0(9)	44.1(3)
C14	2997.6(6)	1474.6(10)	7075.4(9)	46.6(3)
C10	3826.5(6)	2473.5(11)	3675.2(9)	47.9(3)
C15	2895.6(6)	2684.0(11)	6859.5(10)	47.3(3)
C12	3615.1(7)	1401.6(11)	5655.8(10)	51.0(3)
C7	4388.8(7)	7295.3(11)	5752.1(10)	52.4(3)
C13	3358.6(7)	844.4(11)	6451.5(10)	54.0(3)
C4	4458.6(7)	7268.6(12)	3532.9(11)	55.3(3)
C6	4547.0(8)	8301.1(13)	5230.4(13)	63.8(4)
C17	2719.6(8)	844.4(13)	7940.1(12)	61.2(3)
C5	4577.5(8)	8300.7(13)	4137.3(13)	66.8(4)
C18	2625.9(10)	1595.1(16)	8882.6(13)	74.2(4)

Table S2. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for compound 2ad. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	U11	U_{22}	U33	U ₂₃	U ₁₃	U_{12}
01	83.6(6)	60.0(5)	29.0(4)	-1.7(3)	19.0(4)	-2.8(4)
N1	69.3(6)	40.7(5)	27.4(4)	-0.8(3)	16.0(4)	-3.9(4)
C8	45.9(5)	42.4(6)	35.2(5)	0.3(4)	9.7(4)	-1.1(4)
C1	51.8(6)	42.2(5)	26.3(4)	0.6(4)	10.6(4)	1.9(4)
C2	48.8(6)	47.6(6)	28.0(5)	2.7(4)	10.1(4)	0.4(4)
C9	51.7(6)	41.1(5)	30.6(5)	-0.6(4)	9.8(4)	1.9(4)
C11	50.8(6)	37.6(5)	33.3(5)	2.0(4)	8.8(4)	0.8(4)
N2	95.8(9)	58.6(7)	53.4(6)	-18.3(5)	30.0(6)	-15.4(6)
C3	45.1(5)	47.9(6)	33.7(5)	2.7(4)	9.6(4)	-3.8(4)
C16	54.2(6)	34.4(5)	45.6(6)	4.4(4)	15.4(5)	2.9(4)
C14	56.6(6)	40.9(6)	43.0(6)	4.8(4)	12.3(5)	-4.8(5)
C10	61.1(7)	46.4(6)	37.6(5)	-3.7(5)	14.3(5)	-5.7(5)
C15	54.8(6)	41.5(6)	49.9(6)	1.9(5)	20.7(5)	1.2(5)
C12	71.2(8)	38.8(6)	46.6(6)	0.5(5)	20.6(5)	7.6(5)
C7	61.9(7)	48.6(7)	46.4(6)	-7.7(5)	11.4(5)	-4.6(5)
C13	77.6(8)	34.4(6)	52.1(7)	6.2(5)	19.1(6)	4.0(5)
C4	58.7(7)	60.9(8)	46.6(6)	9.9(5)	12.3(5)	-14.2(6)
C6	70.5(8)	47.5(7)	69.7(9)	-7.4(6)	7.9(7)	-13.3(6)
C17	78.8(9)	51.5(7)	58.2(7)	8.8(6)	25.8(7)	-9.5(6)
C5	74.2(9)	54.3(8)	69.6(9)	10.3(7)	11.3(7)	-22.1(7)
C18	99.7(12)	74.6(10)	56.1(8)	6.3(7)	34.1(8)	-14.0(9)

Table S3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for compound 2ad. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table S4. Bond Lengths for compound 2ad.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C2	1.2214(13)	N2	C10	1.1417(16)
N1	C8	1.3905(14)	C3	C4	1.3917(16)
N1	C1	1.3730(13)	C16	C15	1.3818(15)
C8	C3	1.3962(14)	C14	C15	1.3904(17)
C8	C7	1.3828(16)	C14	C13	1.3905(18)
C1	C2	1.5165(14)	C14	C17	1.5138(16)
C1	C9	1.3554(16)	C12	C13	1.3821(17)
C2	C3	1.4545(16)	C7	C6	1.3807(19)
C9	C11	1.4800(14)	C4	C5	1.377(2)
C9	C10	1.4355(15)	C6	C5	1.390(2)
C11	C16	1.3924(15)	C17	C18	1.502(2)
C11	C12	1.3933(16)			

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C1	N1	C8	110.74(9)	C8	C3	C2	107.60(9)
N1	C8	C3	110.13(9)	C4	C3	C8	120.59(11)
C7	C8	N1	128.34(10)	C4	C3	C2	131.80(10)
C7	C8	C3	121.51(11)	C15	C16	C11	120.84(10)
N1	C1	C2	106.47(9)	C15	C14	C13	117.58(11)
С9	C1	N1	127.40(9)	C15	C14	C17	122.05(11)
С9	C1	C2	126.07(9)	C13	C14	C17	120.36(11)
01	C2	C1	125.34(11)	N2	C10	C9	173.42(13)
01	C2	C3	129.60(10)	C16	C15	C14	121.44(11)
C3	C2	C1	105.02(8)	C13	C12	C11	120.94(11)
C1	C9	C11	125.77(9)	C6	C7	C8	116.85(12)
C1	C9	C10	118.82(10)	C12	C13	C14	121.30(11)
C10	C9	C11	115.40(10)	C5	C4	C3	118.21(12)
C16	C11	C9	121.05(10)	C7	C6	C5	122.51(13)
C16	C11	C12	117.88(10)	C18	C17	C14	116.21(12)
C12	C11	C9	121.00(10)	C4	C5	C6	120.31(12)

Table S5. Bond Angles for compound 2ad.

Table S6. Hydrogen Bonds for compound 2ad.

D	Η	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
N1	H1	$O1^1$	0.869(16)	2.053(16)	2.8692(12)	156.1(14)

1+X,1-Y,1/2+Z

Atom	x	у	z	U(eq)
H16	3074.37	4057.21	5938.31	53
H15	2649.6	3123.13	7257.29	57
H12	3851.54	957.58	5245.99	61
H7	4369.61	7308.9	6483.58	63
H13	3428.83	32	6572.1	65
H4	4481.4	7258.54	2802.96	66
H6	4636.7	9005.74	5625.15	77
H17A	2293.92	503.11	7593.6	73
H17B	3013.33	189.36	8225.24	73
Н5	4678.7	9000.72	3812.98	80
H18A	2276.4	2160.34	8634.28	111
H18B	3030.09	2012.44	9185.52	111
H18C	2511.26	1092.63	9430.45	111
H1	4047(7)	5008(14)	6117(13)	57(4)

Table S7. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for compound 2ad.

Experimental

Single crystals of $C_{18}H_{14}N_2O$ **2ad** were obtained via crystallization from ethanol. A suitable crystal was selected and mounted on the glass stick by acrylic glue, and the diffraction was measured on a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer. The crystal was kept at 293(2) K during data collection. The structure was solved using Olex2 software,^{S1} with the ShelXT ^{S2} structure solution algorithm using Intrinsic Phasing and refined with the ShelXL ^{S3} refinement package using Least Squares minimisation.

Crystal structure determination of compound 2ad.

Crystal Data for C₁₈H₁₄N₂O (M =274.31 g/mol): monoclinic, space group C2/c (no. 15), a = 20.6798(2) Å, b = 11.21770(10) Å, c = 12.58050(10) Å, $\beta = 102.8320(10)^\circ$, V = 2845.53(5) Å³, Z = 8, T = 293(2) K, μ (CuK α) = 0.640 mm⁻¹, *Dcalc* = 1.281 g/cm³, 15274 reflections measured (8.772° $\leq 2\Theta \leq 152.69^\circ$), 2976 unique ($R_{int} = 0.0160$, $R_{sigma} = 0.0101$) which were used in all calculations. The final R_1 was 0.0390 (I > 2 σ (I)) and wR_2 was 0.1106 (all data).

Refinement model description

Number of restraints - 0, number of constraints - unknown. Details: 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups At 1.5 times of: All C(H,H,H) groups 2.a Secondary CH2 refined with riding coordinates: C17(H17A,H17B) 2.b Aromatic/amide H refined with riding coordinates: C16(H16), C15(H15), C12(H12), C7(H7), C13(H13), C4(H4), C6(H6), C5(H5) 2.c Idealised Me refined as rotating group: C18(H18A,H18B,H18C)

This report has been created with Olex2, compiled on 2018.05.29 svn.r3508 for OlexSys. Please let us know if there are any errors or if you would like to have additional features.

References

⁽S1) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX 2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339-341.

⁽S2) Sheldrick, G. M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Cryst. 2015, A71, 3-8.

⁽S3) Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Cryst. 2015, C71, 3-8.