Borohydrides Catalyzed Redistribution Reaction of Hydrosilane and Chlorosilane: A Potential System for Facile Preparation of Hydrochlorosilanes

Yi Chen ^{a, b}, Liqing Ai ^{a, b}, Yongming Li ^a, Caihong Xu ^{*a, b}

^{*a*} Institute of Chemistry Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing100190;

^b College of Chemistry and Chemistry Engineering, University of Chinese Academy of Sciences, Beijing 10049

caihong@iccas.ac.cn lym018@iccas.ac.cn

Supporting Information

Table of Contents

I . General information	2
II. Synthesis of hydrosilanes	2
II. Redistribution of hydrosilane and chlorosilane	3
W . Solvent optimization with CICH ₂ SiH ₃ and CICH ₂ SiCl ₃ (Table 1)	20
V . Catalyst optimization with CICH ₂ SiH ₃ and CICH ₂ SiCl ₃ in THF (Table 2)	30
VI. Substrate scope study with LiBH ₄ /HMPA system (Table 3)	43
WI. Control experiments of redistribution reaction of CICH ₂ SiH ₃ / CICH ₂ SiCl ₃ (Table 4)	53
M. DFT calculations	59

I. General information

All the reactions were carried out under nitrogen atmosphere. The chlorosilanes Et₂SiCl₂, PhSiCl₃, PhMeSiCl₂, Ph₂SiCl₂, as well as hydrosilane Et₂SiH₂, PhSiH₃, PhMeSiH₂, and Ph₂SiH₂ were purchased from Shanghai Aladdin Bio-Chem Technology Co., Ltd and used without further purification. The chlorosilanes, ClCH₂SiCl₃, ClCH₂SiMeCl₂, and Cl₂CHSiMeCl₂ were purchased from Hebei Taifeng Chemicals Co., Ltd and used as received. The hydrosilanes ClCH₂SiH₃, ClCH₂SiMeH₂, Cl₂CHSiMeH₂, Cl₂CHSiMeH₂ were prepared by referring literature^{1,2}. The borohydrides LiBH₄, NaBH₄, KBH₄, LiBEt₃H, BH₃/THF solution and the solvents tetrahydrofuran (THF), diethylene glycol dimethyl ether (diglyme), Et₂O, toluene, CH₃CN, 1,3-dimethyl-2-imidazolidinone (DMI), hexamethylphosphoric triamide (HMPA) were purchased from Shanghai Aladdin Bio-Chem Technology Co., Ltd. n-Butyl ether (Bu₂O) was purchased from Beijing J&K Technology Co., Ltd. All reactions were monitored by ¹H NMR using a Bruker AvanceIII-400 MHz spectrometer or a Fourier 300 MHz spectrometer, with the solvent resonance (CDCl₃:7.26) as the internal standard. Data for ¹H NMR are expressed as follows: chemical shift (δ ppm) values, multiplicity (s=singlet, d=doublet, t=triplet, q=quartet, quin=quintet, m=multiplet, b=broad), coupling constants (Hz), integration. Cl₂CHSiMeHCl was verified by GC-MS equipped with MS detector (EI), DB-5MS (30m×0.25mm), and using the following temperature program: Injector 250°C, oven T_{initial} = 50 °C (2 min), rate 20 °C /min, T_{final} = 300 °C, hold 20 min.

I. Synthesis of hydrosilanes

General Procedure for Synthesis of ClCH₂SiH₃

To a mixture of LiAlH₄ (7.84 g, 0.21mol), 50 mL Bu₂O in a 250 mL four-necked flask was added ClCH₂SiCl₃ (46.0 g, 0.25 mol) dropwise. After finishing the addition of chlorosilane, the reaction mixture was further stirred mechanically at 25 °C for 6 h. The final mixture solution was distilled to give 9.6 g (0.12 mol) of ClCH₂SiH₃ (bp. 31°C) in 48% yield as a colorless, volatile liquid. ¹H NMR (400M, CDCl₃): δ 3.82 (t, J = 3.5 Hz, 3H, -SiH₃), 2.98 (q, J = 3.6 Hz, 2H, ClCH₂-). ¹³C NMR (75 MHz, CDCl₃) δ 21.78. ²⁹Si NMR (CDCl₃, 79 MHz, 25 °C): δ -55.73 (see in Figure 1)

Synthesis of ClCH₂SiMeH₂

This compound was prepared in the same manner as described for ClCH₂SiH₃, and was obtained in 70% yield as a colorless, volatile liquid. (bp. 59°C) ¹H NMR (400M, CDCl₃): δ 3.95 (dtd, J = 7.1, 4.0, 2.9 Hz, 2H, -SiH₂-), 2.93 (t, J = 3.0 Hz, 2H, ClCH₂-), 0.29 (t, J = 4.1 Hz, 3H, CH₃-). ¹³C NMR (75 MHz, CDCl₃) δ 25.86, -9.61. ²⁹Si NMR (CDCl₃, 79 MHz, 25 °C): δ -31.84. (see in Figure 2)

Synthesis of Cl₂CHSiMeH₂

This compound was prepared in the same manner as described for ClCH₂SiH₃. The solvent used herein is Et₂O, and after the reduction completed, all the volatiles were distilled into a -196°C trap (liquid nitrogen) under vacuum. Then the mixture was distilled to remove the Et₂O solvent to obtain a pure Cl₂CHSiMeH₂ in 65% yield as a colorless, volatile liquid. ¹H NMR (400M, CDCl₃): δ 5.44 (t, J = 2.0 Hz, 1H, Cl₂CH-), 4.13 (dt, J = 3.9, 2.0 Hz, 2H, -SiH₂-), 0.41 (t, J = 4.0 Hz, 3H, CH₃-) ¹³C NMR (75 MHz, CDCl₃) δ 58.30, -10.03. ²⁹Si NMR (CDCl₃, 79 MHz, 25 °C): δ - 21.10. (see in Figure 3)

III. Redistribution of hydrosilane and chlorosilane

General Procedure for redistribution of hydrosilane and chlorosilane:

To a mixture of catalyst (e.g. LiBH₄), solvent (or neat) in a 25 mL two-necked flask was added hydrosilane and chlorosilane in sequence. The reaction mixture was stirred at room temperature and monitored by ¹H-NMR.

Hydrochlorosilane products

CICH₂SiHCl₂: ¹H NMR (400 MHz, Chloroform-d) δ 5.57 (t, J = 2.3 Hz, 1H, -Si*H*Cl₂), 3.18 (d, J = 2.3 Hz, 2H, CIC*H*₂-). The ¹H NMR data was consistent with previously reported³.

CICH₂SiH₂CI: ¹H NMR (400 MHz, Chloroform-d) δ 4.82 (t, J = 3.4 Hz, 2H, -SiH₂Cl), 3.15 (t, J = 3.4 Hz, 2H, CICH₂-). The ¹H NMR data was consistent with previously reported³.

CICH₂SiMeHCI: All volatiles were distilled into a cold trap under vacuum at room temperature and then fractionally distilled with packed fractional column. Unreacted starting CICH₂SiMeH₂ (5.5 g) was separated at 59 °C, while the desired product CICH₂SiMeHCl distilled at 94°C as a colorless liquid in 62% yield. ¹H NMR (400 MHz, Chloroform-d) δ 4.86 (dqd, *J* = 4.4, 3.0, 1.3 Hz, 1H, -SiHCl), 3.03 (m, 2H, ClCH₂-), 0.63 (d, *J* = 3.0 Hz, 3H, *CH*₃-Si-). ¹³C NMR (101 MHz, Chloroform-d) δ 30.56, 0.00. ²⁹Si NMR (79 MHz, 25°C) δ 4.90. COSY ¹H-¹H NMR (Figure 15d) The ¹H NMR data was consistent with previously reported⁴. (see in Figure 15)

Cl₂CHSiMeHCl: All volatiles were distilled into a cold trap under vacuum and then fractionally distilled with packed fractional column. Unreacted starting Cl₂CHSiMeH₂ was separated at 86 °C, while the desired product Cl₂CHSiMeHCl distilled at 121°C as a colorless liquid in 72% yield. ¹H NMR (400 MHz, Chloroform-d) δ 5.43 (d, J = 1.6 Hz, -CHCl₂), 4.92 (dd, J = 2.9, 1.6 Hz, -SiHCl-), 0.73 (d, J = 2.9 Hz, -SiCH₃). ¹³C NMR (101 MHz, CDCl₃) δ 58.90, -3.73. ²⁹Si NMR (79 MHz, 25°C) δ 3.89. (Figure 16a-c) COSY ¹H-¹H NMR (Figure 16d) EI-MS (Figure 16e).

Et₂SiHCl: ¹H NMR (400 MHz, Chloroform-d) δ 4.63 (q, J = 2.6 Hz, -SiH₂-), 1.14 – 1.02 (m, -CH₃), 0.94 – 0.85 (m, -SiCH₂-). The ¹H NMR data was consistent with previously reported⁵.

Ph₂SiHCl: ¹H NMR (400 MHz, Chloroform-d): d 5.74 (s,1H, -SiHCl-), 7.47-7.76 (m, 10H, Si(C₆H₅)). The ¹H NMR data was consistent with previously reported⁶.

PhMeSiHCl: ¹H NMR (400 MHz, Chloroform-d) δ 7.65 – 7.40 [m, 5H, -Si(C₆H₅)-], 5.30 (q, J = 3.1 Hz, 3H, -SiHCl-), 0.76 (d, J = 3.2 Hz, 3H, -SiCH₃). The ¹H NMR data was consistent with previously reported⁶.

PhSiHCl₂: ¹H NMR (400 MHz, Chloroform-d) δ 5.98 [s, 1H, -Si*H*Cl₂], 7.45 – 7.75 [m, 5H, -Si(C₆H₅)-]. The ¹H NMR data was consistent with previously reported⁶.

PhSiH₂Cl: ¹H NMR (400 MHz, Chloroform-d) δ 5.24 [s, 2H, -SiH₂Cl], 7.55 – 7.74 [m, 5H, -Si(C₆H₅)]. The ¹H NMR data was consistent with previously reported⁶.

Figure 1a. ¹H NMR of ClCH₂SiH₃

Figure 1b. ¹³C NMR of ClCH₂SiH₃

Figure 2b. ¹³C NMR of ClCH₂SiMeH₂

Figure 2c. ²⁹Si NMR of ClCH₂SiMeH₂

Figure 3b. $^{13}\mathrm{C}$ NMR of $\mathrm{Cl_2CHSiMeH_2}$

14 12 10 8 6 4 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 -44 -46 -48 Chemical shift(ppm)

Figure 3c. ²⁹Si NMR of Cl₂CHSiMeH₂

Figure 4. ¹H NMR of Et₂SiH₂

Figure 6. ¹H-NMR of PhSiH₃

Figure 8. ¹H-NMR of ClCH₂SiCl₃

Cl₂CHSi(CH₃)HCl

Figure 16d. COSY ¹H-¹H NMR of Cl₂CHSiMeHCl

IV. Solvent optimization with ClCH₂SiH₃ and ClCH₂SiCl₃ (Table 1)

Procedure for the redistribution reaction of $ClCH_2SiH_3$ and $ClCH_2SiCl_3$ (molar ratio = 1:2) catalyzed by $LiBH_4$ (Table 1)

To a mixture of LiBH₄ (0.018 g, 0.8 mmol), 5 mL solvent (or no solvent, **entry 1**) in a 25 mL two-necked flask was added $ClCH_2SiH_3$ (0.80 g, 0.01 mol) and $ClCH_2SiCl_3$ (3.68 g, 0.02 mol) in sequence. The reaction mixture was stirred by magneton at room temperature for 16 h and measured by ¹H-NMR.

$CICH_{2}SiH_{3} + CICH_{2}SiCI_{3} \xrightarrow[RT, 16h]{LiBH_{4}(cat.)} CICH_{2}SiH_{2}CI + CICH_{2}SiHCI_{2}$					
Entry	Solvent	Product (yield) ^b	_		
1	none	No reaction			
2	diglyme	CH ₃ SiHCl ₂ : 6%, ClCH ₂ SiHCl ₂ : 63%, ClCH ₂ SiH ₂ Cl: 12%			
3	THF	ClCH ₂ SiHCl ₂ : 63%, ClCH ₂ SiH ₂ Cl: 16%			
4	CH ₃ CN	ClCH ₂ SiHCl ₂ : 71%, ClCH ₂ SiH ₂ Cl: 11%			
5	DMI	ClCH ₂ SiHCl ₂ : 71%, ClCH ₂ SiH ₂ Cl: 14%			
6	HMPA	ClCH ₂ SiHCl ₂ : 72%, ClCH ₂ SiH ₂ Cl: 9%			
7	Bu ₂ O	No reaction			
8	Et ₂ O	No reaction			
9	Toluene	No reaction			

^a Reaction conditions: ClCH₂SiH₃ (0.01 mol), ClCH₂SiCl₃ (0.02 mol), LiBH₄ (3.0 mol/%), THF (5 mL), room temperature; ^b yields were determined by ¹H NMR.

Redistribution results of ClCH₂SiCl₃ and ClCH₂SiH₃ (molar ratio = 2:1) without solvent (Table 1, entry 1)

Figure 17a. Redistribution results of ClCH₂SiCl₃ and ClCH₂SiH₃ without solvent (entry 1)

Figure 17b. Redistribution results of ClCH₂SiCl₃ and ClCH₂SiH₃ without solvent (entry 1, zoom in)

Redistribution results of ClCH₂SiCl₃ and ClCH₂SiH₃ (molar ratio = 2:1) in diglyme (Table 1, entry 2)

Redistribution results of ClCH₂SiCl₃ and ClCH₂SiH₃ (molar ratio = 2:1) in THF (Table 1, entry 3)

Redistribution results of ClCH₂SiCl₃ and ClCH₂SiH₃ (molar ratio = 2:1) in CH₃CN (Table 1, entry 4)

Redistribution results of ClCH₂SiCl₃ and ClCH₂SiH₃ (molar ratio = 2:1) in DMI (Table 1, entry 5)

Redistribution results of ClCH₂SiCl₃ and ClCH₂SiH₃ (molar ratio = 2:1) in HMPA (Table 1, entry 6)

Redistribution results of ClCH₂SiCl₃ and ClCH₂SiH₃ (molar ratio = 2:1) in Bu₂O (Table 1, entry 7)

Redistribution results of ClCH₂SiCl₃ and ClCH₂SiH₃ (molar ratio = 2:1) in Et₂O (Table 1, entry 8)

Redistribution results of ClCH₂SiCl₃ and ClCH₂SiH₃ (molar ratio = 2:1) in toluene (Table 1, entry 9)

Figure 25b. Redistribution results of ClCH₂SiCl₃ and ClCH₂SiH₃ in toluene (entry 9, zoom in)

V. Catalyst optimization with ClCH₂SiH₃ and ClCH₂SiCl₃ in THF (Table 2)

Procedure for the redistribution reaction of $ClCH_2SiH_3$ and $ClCH_2SiCl_3$ (molar ratio = 1 : 2) in THF catalyzed by different catalysts (Table 2)

To a mixture of catalysts, 5 mL THF in a 25 mL two-necked flask was added $ClCH_2SiH_3$ (0.80 g, 0.01 mol) and $ClCH_2SiCl_3$ (1.84 g, 0.01 mol) in sequence. The reaction mixture was stirred by magneton at room temperature and measured by ¹H-NMR.

```
      Table 2 Catalyst
      optimization of
      CICH2SiH3+CICH2SiCl3
      catalyst
THF,RT, 20h
      CICH2SiH2CI+CICH2SiHCl2

      redistribution
      reaction of

      CICH2SiH3/CICH2SiCl3<sup>a</sup>
```

Entry	Cat.	Cat. (mol%)	Product (yield) ^b
1	LiBH ₄	0.4	ClCH ₂ SiHCl ₂ : 10%, ClCH ₂ SiH ₂ Cl: 20%
2	LiBH ₄	0.8	ClCH ₂ SiHCl ₂ : 32%, ClCH ₂ SiH ₂ Cl: 27%
3	LiBH_4	1.5	ClCH ₂ SiHCl ₂ : 55%, ClCH ₂ SiH ₂ Cl: 18%
4	$\rm LiBH_4$	3.0	ClCH ₂ SiHCl ₂ : 63%, ClCH ₂ SiH ₂ Cl: 16%
5	LiBEt ₃ H	3.0	ClCH ₂ SiHCl ₂ : 68%, ClCH ₂ SiH ₂ Cl: 12%
6	NaBH ₄	3.0	No reaction
7	KBH_4	3.0	No reaction
8	LiAlH ₄	3.0	ClCH ₂ SiHCl ₂ : 18%, ClCH ₂ SiH ₂ Cl: 21%

^a Reaction conditions: ClCH₂SiH₃ (0.01 mol), ClCH₂SiCl₃ (0.02 mol), THF (5 mL), room temperature; ^b yields were determined by ¹H

NMR.

Redistribution results of ClCH₂SiH₃ and ClCH₂SiCl₃ (molar ratio = 1:2) in THF catalyzed by LiBH₄ (0.4 mol%) (Table 2, entry 1)

Figure 26b. Redistribution results of ClCH₂SiH₃ and ClCH₂SiCl₃ (1:2) in THF (entry 1, zoom in)

Redistribution results of ClCH₂SiH₃ and ClCH₂SiCl₃ (molar ratio = 1:2) in THF catalyzed by LiBH₄ (0.8 mol%) (Table 2, entry 2)

Figure 27a. Redistribution results of ClCH₂SiH₃ and ClCH₂SiCl₃ (1:2) in THF (entry 2)

Figure 27b. Redistribution results of ClCH₂SiH₃ and ClCH₂SiCl₃ (1:2) in THF (entry 2, zoom in)

Redistribution results of ClCH₂SiH₃ and ClCH₂SiCl₃ (molar ratio = 1:2) in THF catalyzed by LiBH₄ (1.5 mol%) (Table 2, entry 3)

75 5.70 5.65 5.60 5.55 5.50 5.45 5.40 4.90 4.85 4.80 4.75 4.70 4.65 3.50 3.45 3.40 3.35 3.30 3.25 3.20 3.15 3.10 3.05 3.00 2.95 2.90 2.85 Chemical shift(ppm)

Figure 28b. Redistribution results of ClCH₂SiH₃ and ClCH₂SiCl₃ (1:2) in THF (entry 3, zoom in)

Redistribution results of ClCH₂SiH₃ and ClCH₂SiCl₃ (molar ratio = 1:2) in THF catalyzed by LiBH₄ (3.0 mol%) (Table 2, entry 4)

5.70 5.65 5.60 5.55 5.50 5.45 5.40 5.35 5.304.90 4.85 4.80 4.75 4.70 4.65 3.45 3.40 3.35 3.30 3.25 3.20 3.15 3.10 3.05 3.00 Chemical shift(ppm)

Redistribution results of ClCH₂SiH₃ and ClCH₂SiCl₃ (molar ratio = 1:2) in THF catalyzed by LiBEt₃H (3.0 mol%) (Table 2, entry 5)

Figure 30b. Redistribution results of ClCH₂SiH₃ and ClCH₂SiCl₃ (1:2) in THF (entry 5, zoom in)

Redistribution results of ClCH₂SiH₃ and ClCH₂SiCl₃ (molar ratio = 1:2) in THF catalyzed by NaBH₄ (3.0 mol%) (Table 2, entry 6)

Figure 31b. Redistribution results of ClCH₂SiH₃ and ClCH₂SiCl₃ (1:2) in THF (entry 6, zoom in)

Redistribution results of ClCH₂SiH₃ and ClCH₂SiCl₃ (molar ratio = 1:2) in THF catalyzed by KBH₄ (3.0 mol%) (Table 2, entry 7)

Figure 32b. Redistribution results of ClCH₂SiH₃ and ClCH₂SiCl₃ (1:2) in THF (entry 7, zoom in)

Redistribution results of ClCH₂SiH₃ and ClCH₂SiCl₃ (molar ratio = 1:2) in THF catalyzed by LiAlH₄ (3.0 mol%) (Table 2, entry 8)

Figure 33b. Redistribution results of ClCH₂SiH₃ and ClCH₂SiCl₃ (1:2) in THF (entry 8, zoom in)

Redistribution results of $ClCH_2SiH_3$ and $ClCH_2SiCl_3$ (molar ratio = 1:2) in catalyzed by NaBH₄ in diglyme (3.0 mol%)-20 h

5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.3 3.2 3.1 3.0 2.9 2.8 2.7 Chemical shift(ppm)

Figure 34b. Redistribution results of ClCH₂SiH₃ and ClCH₂SiCl₃ (1:2) catalyzed by NaBH₄ (zoom in)

Redistribution results of ClCH₂SiH₃ and ClCH₂SiCl₃ (molar ratio = 1:2) in catalyzed by KBH₄ in diglyme (3.0 mol%)-20 h

5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.3 3.2 3.1 3.0 2.9 2.8 2.7 Chemical shift(ppm)

Figure 35b. Redistribution results of ClCH₂SiH₃ and ClCH₂SiCl₃ (1:2) catalyzed by KBH₄ (zoom in)

 $Redistribution\ results\ of\ Cl_2CHSiMeH_2\ and\ Cl_2CHSiMeCl_2\ (molar\ ratio = 1:1)\ in\ diglyme\ catalyzed\ by\ LiBH_4\ (4.0\ mol\%)-11\ h$

Figure 36b. Redistribution results of Cl₂CHSiMeH₂ and Cl₂CHSiMeCl₂ (1:1) (zoom in)

 $Redistribution\ results\ of\ Cl_2CHSiMeH_2\ and\ Cl_2CHSiMeCl_2\ (molar\ ratio = 1:1)\ in\ diglyme\ catalyzed\ by\ NaBH_4\ (4.0\ mol\%)-11\ h$

5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.017 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 Chemical shift(ppm)

Figure 37b. Redistribution results of Cl₂CHSiMeH₂ and Cl₂CHSiMeCl₂ (1:1) (zoom in)

VI. Substrate scope study with LiBH₄/HMPA system (Table 3)

Procedure for the redistribution reaction of hydrosilane and chlorosilane in HMPA catalyzed by LiBH₄ (Table 3)

To a mixture of LiBH₄, 5 mL HMPA in a 25 mL two-necked flask was added hydrosilane and chlorosilane in sequence. The reaction mixture was stirred by magneton at room temperature and measured by ¹H-NMR.

$R_{4-x}SiH_x + R_{4-x}SiCl_x \xrightarrow{\text{LiBH}_4(cat.)} R_{4-x}SiH_{x-y}Cl_y$						
Entry	R _{4-x} SiH _x / R _{4-x} SiCl _x	Ratio	cat. (mol%)	t (h)	Product (yield) ^b	
1	ClCH ₂ SiH ₃ / ClCH ₂ SiCl ₃	1:2	3	0.5	ClCH ₂ SiHCl ₂ : 75%, ClCH ₂ SiH ₂ Cl: 9%	
2	ClCH ₂ SiH ₃ / ClCH ₂ SiCl ₃	2:1	3	0.5	CICH ₂ SiHCl ₂ : 23% CICH ₂ SiH ₂ Cl: 56%	
3	ClCH ₂ SiMeH ₂ / ClCH ₂ SiMeCl ₂	1:1	2	0.5	ClCH ₂ SiMeHCl: 74% (62% ^c)	
4	Cl ₂ CHSiMeH ₂ / Cl ₂ CHSiMeCl ₂	1:1	4	0.5	Cl ₂ CHSiMeHCl: 85% (72% ^c)	
5	$Et_2SiH_2/$ Et_2SiCl_2	1:1	4	8	Et ₂ SiHCl:72%	
6	PhSiH ₃ / PhSiCl ₃	1:2	3	2	PhSiHCl ₂ : 61% PhSiH ₂ Cl: 10%	
7	PhSiH ₃ / PhSiCl ₃	2:1	3	2	PhSiHCl ₂ :12% PhSiH ₂ Cl: 61%	
8	PhMeSiH ₂ / PhMeSiCl ₂	1:1	4	2	PhMeSiHCl: 66%	
9	Ph ₂ SiH ₂ / Ph ₂ SiCl ₂	1:1	4	8	Ph ₂ SiHCl: 63%	

Table 3 Redistribution reaction between hydrosilane and chlorosilane in HMPA catalyzed by LiBH₄^a

^{*a*} Reaction conditions: [entry 3-5, 8, 9] hydrosilane (0.01 mol), chlorosilane (0.01 mol); [entry 1, 6] hydrosilane (0.01 mol), chlorosilane (0.02 mol); [entry 2, 7] hydrosilane (0.02 mol), chlorosilane (0.01 mol); HMPA (5 mL), room temperature; ^{*b*} yields determined by ¹H NMR; ^{*c*} Isolated yield in a larger scale reaction. Reaction conditions: hydrosilane (0.2 mol), chlorosilane (0.2 mol), HMPA (10 mL), LiBH₄ (2 mol %), room temperature.

Redistribution results of ClCH₂SiH₃ and ClCH₂SiCl₃ (molar ratio = 1:2) in HMPA catalyzed by LiBH₄ (3.0 mol%) (Table 3, entry 1)

Figure 38b. Redistribution results of ClCH₂SiH₃ and ClCH₂SiCl₃ (1:2) in THF (entry 1, zoom in)

Redistribution results of ClCH₂SiH₃ and ClCH₂SiCl₃ (molar ratio = 2:1) in HMPA catalyzed by LiBH₄ (3.0 mol%) (Table 3, entry 2)

Figure 39b. Redistribution results of ClCH₂SiH₃ and ClCH₂SiCl₃ (2:1) in HMPA (entry 2, zoom in)

Redistribution results of ClCH₂SiMeH₂ and ClCH₂SiMeCl₂ (molar ratio = 1:1) in HMPA catalyzed by LiBH₄ (2.0 mol%) (Table 3, entry 3)

Figure 40a. Redistribution results of ClCH₂SiMeH₂ and ClCH₂SiMeCl₂ (1:1) in HMPA (Table 3, entry 3)

Figure 40b. Redistribution results of ClCH₂SiMeH₂ and ClCH₂SiMeCl₂ (1:1) in HMPA (entry 3, zoom in)

Redistribution results of Cl₂CHSiMeH₂ and Cl₂CHSiMeCl₂ (molar ratio = 1:1) in HMPA catalyzed by LiBH₄ (4.0 mol%) (Table 3, entry 4)

Figure 41b. Redistribution results of Cl₂CHSiMeH₂ and Cl₂CHSiMeCl₂ (1:1) in HMPA (entry 4, zoom in)

Redistribution results of Et₂SiH₂ and Et₂SiCl₂ (molar ratio = 1:1) in HMPA catalyzed by LiBH₄ (4.0 mol%) (Table 3, entry 5)

Figure 42a. Redistribution results of Et₂SiH₂ and Et₂SiCl₂(1:1) in HMPA (Table 3, entry 5)

Figure 42b. Redistribution results of Et_2SiH_2 and $Et_2SiCl_2(1:1)$ in HMPA (entry 5, zoom in) Redistribution results of PhSiH₃ and PhSiCl₃ (molar ratio = 1:2) in HMPA catalyzed by LiBH₄ (3.0 mol%) (Table 3, entry 6)

Figure 43a. Redistribution results of PhSiH₃ and PhSiCl₃(1:2) in HMPA (Table 3, entry 6)

Figure 43b. Redistribution results of PhSiH₃ and PhSiCl₃(1:2) in HMPA (entry 6, zoom in)

Redistribution results of PhSiH₃ and PhSiCl₃ (molar ratio = 2:1) in HMPA catalyzed by LiBH₄ (3.0 mol%) (Table 3, entry 7)

Figure 44a. Redistribution results of PhSiH₃ and PhSiCl₃(2:1) in HMPA (Table 3, entry 7)

Figure 44b. Redistribution results of PhSiH₃ and PhSiCl₃(2:1) in HMPA (entry 7, zoom in) Redistribution results of PhMeSiH₂ and PhMeSiCl₂ (molar ratio = 1:1) in HMPA catalyzed by LiBH₄ (4.0 mol%) (Table 3, entry 8)

Figure 45a. Redistribution results of PhSiMeH₂ and PhSiMeCl₂ (1:1) in HMPA (Table 3, entry 8)

Figure 45b. Redistribution results of PhSiMeH₂ and PhSiMeCl₂ (1:1) in HMPA (entry 8, zoom in)

 $Redistribution \ results \ of \ Ph_2SiH_2 \ and \ Ph_2SiCl_2 \ (molar \ ratio = 1:1) \ in \ HMPA \ catalyzed \ by \ LiBH_4 \ (4.0 \ mol\%)$

Figure 46b. Redistribution results of Ph_2SiH_2 and Ph_2SiCl_2 (1:1) in HMPA (entry 9, zoom in)

VI. Control experiments of redistribution reaction of ClCH₂SiH₃/ ClCH₂SiCl₃ (Table 4)

Procedure for the redistribution reaction of hydrosilane and chlorosilane in THF catalyzed by different catalysts (Table 4)

To a mixture of catalyst, 5 mL THF in a 25 mL two-necked flask was added hydrosilane and chlorosilane in sequence. The reaction mixture was stirred by magneton at room temperature and measured by ¹H-NMR.

Procedure for the reduction reaction of ClCH₂SiCl₃ in THF catalyzed by LiBH₄

In a 25 mL two-necked flask was added 5 mL THF, 0.03 mol LiBH₄, and the solution was measured by ¹¹B NMR in d8-THF (Figure 51a). Then 0.01 mol ClCH₂SiCl₃ was added to the solution dropwise. The reaction mixture was stirred by magneton for 1 hour at room temperature and measured by ¹¹B-NMR in d8-THF (Figure 51b). The peak of BH₃·THF [¹¹B NMR (128 MHz) δ -0.40 (q, J = 105.8 Hz)] was found according to NMR data previously reported⁷.

Table 4 Control experiments of redistribution reaction of ClCH₂SiH₃/ClCH₂SiCl₃^a

			RT,THF
Entry	Catalyst	t(h)	Product (yield) ^b
1	BH_3	20	No reaction
2	LiCl	5	ClCH ₂ SiHCl ₂ : 40%, ClCH ₂ SiH ₂ Cl: 23%
3	BH ₃ , LiCl	5	CICH ₂ SiHCl ₂ : 62%, CICH ₂ SiH ₂ Cl: 18%
4	$LiBH_4$	5	ClCH ₂ SiHCl ₂ : 62%, ClCH ₂ SiH ₂ Cl: 18%

CICH₂SiH₃ + CICH₂SiCl₃ → CICH₂SiH₂CI + CICH₂SiHCl₂

^{*a*} Reaction conditions: ClCH₂SiH₃ (0.01 mol), ClCH₂SiCl₃ (0.02 mol), catalyst (3.0 mol/%), THF (5 mL), room temperature; ^{*b*} yields were determined by ¹H NMR.

Redistribution results of ClCH₂SiH₃ and ClCH₂SiCl₃ (molar ratio = 1:2) in THF catalyzed by BH₃ (3.0 mol%)-20 h (Table 4, entry 1)

Figure 47b. Redistribution results of ClCH₂SiH₃ and ClCH₂SiCl₃ (1:2) in THF-20 h (entry 1, zoom in)

Redistribution results of $ClCH_2SiH_3/ClCH_2SiCl_3$ (molar ratio = 1:2) catalyzed by LiCl (3 mol%)-5 h (Table 4, entry 2)

'.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 Chemical shift(ppm)

Figure 48a. Redistribution results of ClCH₂SiH₃/ClCH₂SiCl₃ catalyzed by LiCl (3 mol%)-5 h (entry 2)

Figure 48b. Redistribution results of ClCH₂SiH₃/ClCH₂SiCl₃ catalyzed by LiCl (3 mol%)-5 h (entry 2, zoom in)

Redistribution results of ClCH₂SiH₃/ClCH₂SiCl₃ (molar ratio = 1:2) catalyzed by BH₃/LiCl (3 mol%)-5 h (Table 4, entry 3)

7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 Chemical shift(ppm)

Figure 49a. Redistribution results of ClCH₂SiH₃/ClCH₂SiCl₃ catalyzed by BH₃/LiCl (3 mol%)-5 h (entry 3)

Figure 49b. Redistribution results of ClCH₂SiH₃/ClCH₂SiCl₃ catalyzed by BH₃/LiCl (3 mol%)-5h (entry 3, zoom in)

Redistribution results of ClCH₂SiH₃/ClCH₂SiCl₃ (molar ratio = 1:2) catalyzed by LiBH₄ (3 mol%)-5 h (Table

7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 Chemical shift(ppm)

Figure 50a. Redistribution results of ClCH₂SiH₃/ClCH₂SiCl₃ catalyzed by LiBH₄ (3 mol%)-5 h (entry 4)

Figure 50b. Redistribution results of ClCH₂SiH₃/ClCH₂SiCl₃ catalyzed by LiBH₄ (3 mol%)-5 h (entry 4, zoom in)

Figure 51b. ¹¹B NMR of the reaction mixture between LiBH₄ and ClCH₂SiCl₃ after 1 hour (d8-THF)

WI. DFT calculations

DFT calculations were performed using Gaussian 09, and geometry optimizations of all molecules and intermediates were carried out using B3LYP/6-311G (d, p) basis sets implemented in the Gaussian 09 software. The solvation effect of THF is also considered with SMD model. Frequency analysis of all the molecules and intermediates contained no imaginary frequency showing that they are energy minima. Pictures of molecular structures were generated with the Cylview⁸ program.

Scheme 1 The possible mechanism of borohydrides catalyzed Si-H/Si-Cl redistribution reaction

Scheme 2 The possible redistribution process of borohydrides catalyzed Si-H/Si-Cl redistribution reaction of ClCH₂SiH₃/ClCH₂SiCl₃ in THF.

	Si-H bond length/Å (in THF)
CICH ₂ SiHCl ₂	1.46858
ClCH ₂ SiH ₂ Cl	1.47511
CICH ₂ SiH ₃	1.48505
Intermediate I	1.64904*
Intermediate II	1.49092*
Intermediate III	1.72186*
Intermediate IV	1.47912*
Intermediate V	1.75757*
Intermediate VI	1.49159*

Table 5 Calculation results of Si-H bond length at the B3LYP/6-311G (d, p) level of theory

* Apical Si-H bond length.

CICH₂SiCl₃:

Cl	0	-2.674053	0.000001	0.362646
С	0	-1.081923	0.000029	1.231899
Н	0	-1.054540	0.886752	1.866081
Н	0	-1.054541	-0.886633	1.866163
Si	0	0.380716	-0.000003	0.063371
Cl	0	2.095008	-0.000308	1.207626
Cl	0	0.385883	1.668727	-1.138191
Cl	0	0.385551	-1.668435	-1.138600

Sum of electronic and zero-point Energies= -2169.868124 Hartree Sum of electronic and thermal Energies= -2169.859931 Hartree Sum of electronic and thermal Enthalpies= -2169.858987 Hartree Sum of electronic and thermal Free Energies= -2169.903358 Hartree

BH4⁻:

В	0	0.000183	0.000074	-0.000071
Н	0	-0.463721	0.135245	1.127321
Н	0	1.189816	0.302066	0.007240
Н	0	-0.123464	-1.168232	-0.354935
Н	0	-0.603547	0.730551	-0.779271

Sum of electronic and zero-point Energies=-27.331697 Hartree Sum of electronic and thermal Energies=-27.328758 Hartree Sum of electronic and thermal Enthalpies=-27.327814 Hartree Sum of electronic and thermal Free Energies=-27.351618 Hartree

Si	0	-0.278288	0.061820	0.000039
С	0	1.052105	-1.304459	-0.000218
Cl	0	2.798754	-0.810230	0.000160
Н	0	0.890174	1.225444	0.000838
Н	0	0.903040	-1.925229	-0.882625
Н	0	0.902806	-1.925830	0.881723
Cl	0	-1.844966	-1.572190	-0.000449
В	0	1.432813	2.443616	0.000184
Н	0	2.075515	2.430562	1.019825
Н	0	2.075296	2.429977	-1.019571
Н	0	0.489974	3.191315	0.000029
Cl	0	-0.974750	0.876659	1.819968
Cl	0	-0.974183	0.877347	-1.819701

Sum of electronic and zero-point Energies= -2197.190834 Hartree Sum of electronic and thermal Energies=-2197.179449 Hartree Sum of electronic and thermal Enthalpies= -2197.178504 Hartree Sum of electronic and thermal Free Energies=-2197.229341 Hartree

BH₃:

В	0	0.000000	0.000000	0.000000	
Н	0	0.000000	1.189458	0.000000	
Н	0	1.030101	-0.594729	0.000000	
Н	0	-1.030101	-0.594729	0.000000	
Sum of electronic and zero-point Energies= -26.595228 Hartree					
Sum of electronic and thermal Energies=-26.592337 Hartree					
Sum of electronic and thermal Enthalpies=-26.591393 Hartree					
Sum of electronic and thermal Free Energies=-26.612774 Hartree					

intermediate II

Si	0	-0.148934	-0.000001	-0.328768
С	0	1.352122	-0.000008	0.856236
Cl	0	2.970345	-0.000006	-0.006780
Н	0	0.568022	-0.000004	-1.635986
Н	0	1.348231	-0.882076	1.494353
Н	0	1.348233	0.882055	1.494361
Cl	0	-1.471035	0.000004	1.601937
Cl	0	-1.022944	1.938093	-0.853090
Cl	0	-1.022963	-1.938087	-0.853090

Sum of electronic and zero-point Energies= -2170.575375 Hartree Sum of electronic and thermal Energies= -2170.566271 Hartree Sum of electronic and thermal Enthalpies= -2170.565327 Hartree Sum of electronic and thermal Free Energies= -2170.612538 Hartree

Cŀ:

Cl	0	0.000000	0.000000	0.000000
Sum of ele	ctronic and	zero-point Energ	ies= -460.395	968 Hartree
Sum of ele	ctronic and	thermal Energies	= -460.394552	2 Hartree
Sum of ele	ctronic and	thermal Enthalpi	es= -460.3936	07 Hartree
Sum of ele	ctronic and	thermal Free Ene	ergies= -460.4	10991 Hartree

CICH₂SiHCl₂:

Cl	0	2.596074	-0.305807	0.059117	
С	0	0.979350	-0.953269	-0.477761	
Н	0	0.914334	-0.817224	-1.556755	
Н	0	0.972350	-2.020849	-0.255608	
Si	0	-0.409907	-0.080982	0.433915	
Н	0	-0.274087	-0.116215	1.895774	
Cl	0	-2.185775	-1.020473	-0.094072	
Cl	0	-0.513240	1.903200	-0.158672	
Sum of e	lectronic and	-1710.188479 Har	tree		
Sum of e	lectronic and	-1710.181472 Ha	artree		
Sum of electronic and thermal Enthalpies=				-1710.180528 Ha	rtree
Sum of electronic and thermal Free Energies=				-1710.222018 Har	tree

Si	0	0.397959	0.233042	0.478925
С	0	-0.713502	-1.242501	0.013764
Cl	0	-2.415563	-0.893170	-0.531680
Н	0	0.810535	0.673285	1.813471
Н	0	-1.007645	1.221468	0.588858
Н	0	-0.791750	-1.905390	0.876403
Н	0	-0.248138	-1.795877	-0.798581
Cl	0	2.226014	-1.147470	0.368336
В	0	-1.574283	1.895131	1.527975
Н	0	-2.573304	2.295304	0.974645
Н	0	-1.789256	1.109697	2.424312
Н	0	-0.791049	2.765851	1.829771
Cl	0	0.952584	1.473136	-1.138790

Sum of electronic and zero-point Energies= -1737.514216 Hartree Sum of electronic and thermal Energies= -1737.503866 Hartree Sum of electronic and thermal Enthalpies= -1737.502922 Hartree Sum of electronic and thermal Free Energies= -1737.551321 Hartree

С	0	0.526713	-1.005806	0.181276
Cl	0	2.255085	-1.357722	-0.336384
Н	0	-0.101606	-1.125704	-0.696652
Н	0	0.258050	-1.771813	0.907310
Н	0	-0.812659	0.811039	1.836725
Cl	0	0.101013	2.150245	-0.571327
Cl	0	-2.887127	-0.963847	-0.147492
Н	0	1.601513	1.082029	1.638651
Sum of electronic and zero-point Energies= -1710.901045 Hartree				

Sum of electronic and thermal Energies= -1710.892804 Hartree Sum of electronic and thermal Enthalpies= -1710.891859 Hartree Sum of electronic and thermal Free Energies= -1710.938708 Hartree

ClCH₂SiH₂Cl:

Si	0	0.482934	0.629043	0.000133
С	0	-0.794220	-0.757331	0.000292
Cl	0	-2.458899	0.006747	-0.000153
Н	0	0.378205	1.444180	1.225061
Н	0	0.377740	1.444375	-1.224657
Н	0	-0.734544	-1.386126	0.887776
Н	0	-0.734616	-1.386835	-0.886723
Cl	0	2.383456	-0.264289	-0.000146
Sum of ele	ectronic and ze	ro-point Energi	es=	-1250.505460 Hartree
Sum of electronic and thermal Energies=				-1250.499547 Hartree
Sum of ele	ectronic and th	-1250.498603 Hartree		

-1250.536334 Hartree

Sum of electronic and thermal Free Energies=

Si	0	-0.496631	0.680355	-0.000001
С	0	0.318418	-1.050383	0.000523
Cl	0	2.144817	-1.156607	-0.000187
Н	0	-0.753003	1.343966	-1.286488
Н	0	1.113858	1.384185	0.000431
Н	0	-0.753599	1.344486	1.286107
Н	0	-0.010371	-1.599642	-0.880089
Н	0	-0.009668	-1.598740	0.881968
Cl	0	-2.584353	-0.348610	-0.000114
В	0	1.567769	2.575756	0.000021
Н	0	2.228801	2.634711	1.015212
Н	0	2.228192	2.634616	-1.015551
Н	0	0.631389	3.343672	0.000283

Sum of electronic and zero-point Energies = -1277.833146 Hartree Sum of electronic and thermal Energies = -1277.823808 Hartree Sum of electronic and thermal Enthalpies = -1277.822864 Hartree Sum of electronic and thermal Free Energies = -1277.868448 Hartree

intermediate VI

1.48	1.492 Å	
0	3.746 A	Ģ

Si	0	-0.266256	1.475332	0.017671
С	0	-0.630191	-0.364546	-0.311748
Cl	0	-2.382136	-0.793141	0.095272
Н	0	0.788572	1.980184	-0.900769
Н	0	0.130013	1.690919	1.436504
Н	0	-0.008514	-1.018926	0.296569

Н	0	-0.490267	-0.633725	-1.358616	
Cl	0	2.888578	-0.543611	0.045505	
Н	0	-1.520589	2.238953	-0.243810	
Sum of elec	tronic an	d zero-point Ener	gies= -1251.2	15801 Hartree	
Sum of electronic and thermal Energies= -1251.208563 Hartree					
Sum of electronic and thermal Enthalpies=-1251.207619 Hartree					
Sum of electronic and thermal Free Energies= -1251.250114 Hartree					

CICH₂SiH₃:

Si	0	1.523527	-0.191844	-0.000007
С	0	-0.068002	0.839699	0.000006
Cl	0	-1.555237	-0.232492	-0.000002
Н	0	1.568123	-1.043770	1.212356
Н	0	2.675603	0.745226	0.000106
Н	0	1.568208	-1.043628	-1.212390
Н	0	-0.147118	1.471108	-0.884355
Н	0	-0.147155	1.471051	0.884387

Sum of electronic and zero-point Energies= -790.820445 Hartree
Sum of electronic and thermal Energies= -790.815480 Hartree
Sum of electronic and thermal Enthalpies= -790.814536 Hartree
Sum of electronic and thermal Free Energies= -790.848518 Hartree

References

- (1) H. Schmidbaur and J. Ebenhöch, Zeitschrift für Naturforschung B, 2014, 41, 1527–1534.
- (2) J. R. Durig, Y. E. Nashed, Y. Jin and G. A. Guirgis, Journal of Molecular Structure, 1998, 449, 1– 22.
- (3) United States, US20120196981A1, 2012.
- (4) V. A. Pestunovich, S. V. Kirpichenko, N. F. Lazareva, A. I. Albanov and M. G. Voronkov, Journal of Organometallic Chemistry, 2007, 692, 2160–2167.
- (5) A. V. Lebedev, V. D. Sheludyakov, A. B. Lebedeva, S. N. Ovcharuk, N. N. Govorov and S. A. Kalinina, Russ J Appl Chem, 2014, 87, 629–633.
- (6) W. Wang, Y. Tan, Z. Xie and Z. Zhang, Journal of Organometallic Chemistry, 2014, 769, 29-33.
- (7) X. Chen, X. Bao, J.-C. Zhao and S. G. Shore, J. Am. Chem. Soc., 2011, 133, 14172–14175.
- (8) C. Y. Legault, CYLview, 1.0b Université de Sherbrooke, http://www.cylview.org, 2009