Supporting Information

Efficient Ce-Co Composite Oxides Decorated Au Nanoparticles for Catalytic Oxidation of CO in Simulated Atmosphere of CO₂ Laser

Qiang Fang^{a+}, Hailian Li^{a+}, Qingquan Lin^a*, Kuo Liu^b*, Yang Su^c, Guodong Huo^a, Xuhua Zou^a, Xiufeng Xu^a, Haisheng Wei^a, Shixue Qi^a*

^a Institute of Applied Catalysis, College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China

^b Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

^c Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

* Corresponding authors. E-mails: <u>Tsqlin@ytu.edu.cn</u> (Q. Lin), <u>kuoliu@rcees.ac.cn</u> (K. Liu), <u>Qishixue@ytu.edu. cn</u> (S. Qi)

⁺ These authors contributed equally to this work.

Supporting figures and table

The equation for calculating the reaction rate was as follows:

$$x_{con} = \frac{X_{in} - X_{out}}{X_{in}} \times 100\%$$
(1-1)

$$n_{co} = \frac{P \times V_{feed}}{RT} \times X_{in}$$
(2-2)

$$TOF = \frac{n_{co} \times x_{con}}{m_{cat.} \times Au_{loading}}$$
(2-3)

Xin: CO peak area tested by Gas Chromatography (GC)

X_{out}: The peak area of residual CO tested by GC

 x_{con} : CO conversion

P: Atmospheric pressure

 V_{feed} : The volume of gas which, under steady conditions, crosses the sample in unit time

T: Room temperature

 n_{co} : The amount of CO in the feed gas

 m_{cat} : The quality of catalyst

 $Au_{loading}$: The actual loading of Au

TOF: Reaction rate

Catalyst	Au nominal loading (wt %)	Au actual loading (wt %)	BET surface area
			$(m^2 g^{-1})$
Au/Al ₂ O ₃	1.0	0.71	137
Au/CeO _x /Al ₂ O ₃	1.0	0.79	126
Au/CoO _x /Al ₂ O ₃	1.0	0.46	121
Au/Ce-Co-O _x /Al ₂ O ₃	1.0	0.89	119

Table S1 Physical properties of various supported Au catalysts

Fig. S1 CO conversions as a function of the reaction time over the Au/Al₂O₃ (a) and Au/Ce-Co- O_x/Al_2O_3 (b) catalysts in atmospheres with and without CO₂

Reactant conditions: 60 vol.% CO_2 + 1 vol.% CO + 0.5 vol.% O_2 , balanced N₂ (with CO_2); or 1 vol.% CO + 0.5 vol.% O_2 , balanced N₂ (without CO_2); WHSV = 120, 000 mL g⁻¹ h⁻¹, Temperature = 220 °C.

Fig. S2 CO oxidation specific rates as a function of the reaction time over the Au/Al₂O₃ (a) and Au/Ce-Co-O_x/Al₂O₃ (b) catalysts in atmospheres with and without CO₂ Reactant conditions: 60 vol.% CO₂ + 1 vol.% CO + 0.5 vol.% O₂, balanced N₂; or 1 vol.% CO + 0.5 vol.% O₂, balanced N₂ (without CO₂); WHSV = 1, 200, 000 mL g⁻¹ h⁻¹, Temperature = 220 °C

Fig. S3 HAADF-STEM image and EDX profiles of Au/Ce-Co-O_x/Al₂O₃ catalyst.