Supporting Information

Unidirectional growth of organic single crystals of naphthalene, anthracene and pyrene by

isothermal expansion of supercritical CO₂

Anant Sarve[‡], Jimil George[†], Santosh Agrawal[¶], Raksh Vir Jasra[¶] and Pradip Munshi^{¶*}

[‡] Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, India.

†Department of Chemistry, Cochin University of Science and Technology, Cochin, Kerala 682022, India. [#]Research Centre, Reliance Technology Group, Reliance Industries Limited, Vadodara, Gujarat, India, 391346, India.

Content	Page
Index	1
Measurement of depressurized CO ₂ .	2
Determination of rate of crystallization	2
Table S1: Recycle test of anthracene crystallization.	3
Fig. S1. Pneumatic trough gas collection for measurement of depressurized CO ₂ gas collected to crystallizer vent.	3
Fig S2. a) SEM Image, b) XRD of naphthalene crystal. CO_2 120 bar, temp. 45°C, depressurization 10 mL per min, FWHM for 2 θ 13.96° [001] 0.0856.	4
Fig. S3. a) SEM Image, b) XRD of anthracene crystal. CO ₂ 120 bar, temp. 45°C, depressurization 50 mL per min.	4

1. Measurement of depressurized CO₂.

Depressurized CO₂ was measured through pneumatic trough as described in Fig S2. The outlet of crystallizer vent was connected to the inlet shown by " \rightarrow ". A flat container of 5 L (1) was taken and filled with 2.5 L water. A graduated cylinder (2) (diameter 20 cm, height 10 cm) was completely filled with water and placed inverted into 1. Incoming CO₂ from crystallizer vessel as shown through arrow (\rightarrow) was passed through the tube (3) that is inserted under water into 2 as shown in Fig S2. Collected CO₂ (4) was measured with respect to time as per the pre-calibrated water level.

2. Determination of rate of crystallization

The rate of crystallization was calculated as described below.

Volume of crystallizer Vc = 100 mL

Working Pressure $P_w = 120$ bar = 118.43 atm

Depressurization pressure $P_d = 1$ atm

Volume of CO_2 in 1 atm, V_{atm} was obtained from eq 1.

Depressurization rate $(mL/min) = R_d$

Time required for complete depressurization (t) in sec was obtained from eq 2.

Crystal length measured in mm = l

Crystal length in meter $l_c = \frac{l}{1000}$

Growth rate R in m.s-1 was obtained from eq 3.

$$V_{atm} = \frac{P_w V_c}{P_d}$$
(1)
$$t = \frac{V_{atm}}{R_d} x60$$
(2)

$$R = \frac{l_c}{t} \tag{3}$$

For example, Growth rate of anthracene ((Table 2, in present work) in m.s⁻¹

$$R_{anthracene} = \frac{l_c}{t} = \frac{l_c R_d}{V_{atm}.60} = \frac{l_c R_d P_d}{P_w V_c.60000} = \frac{2x10x1}{118.43x100x60000} = \frac{2.8 \text{ x}10^{-8}}{2.8 \text{ x}10^{-8}}$$

Table S1: Recycle test of anthracene crystallization.^{a)}

Recycle	$W_{0}(g)$	$W_{c}(g)$	$W_{p}\left(g ight)$	$W_{a}\left(g ight)$	% Yield
Nos.					[(W _c /W ₀) x 100]
1	2	1.35	0.52	1.48	67.09
2	2	1.30	0.54	1.46	65.0
3	2	1.33	0.43		66.5

a) CO₂ 120 bar; temperature 45 °C; depressurization 10 mLper min. W_0 weight taken; W_c weight of crystals obtained (g) W_p weight of powder after cycle.

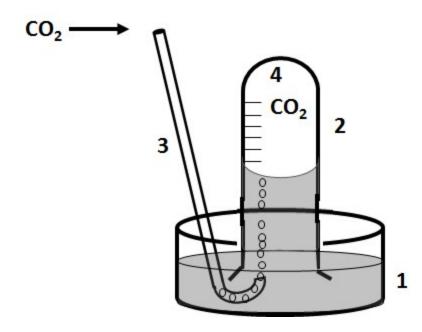
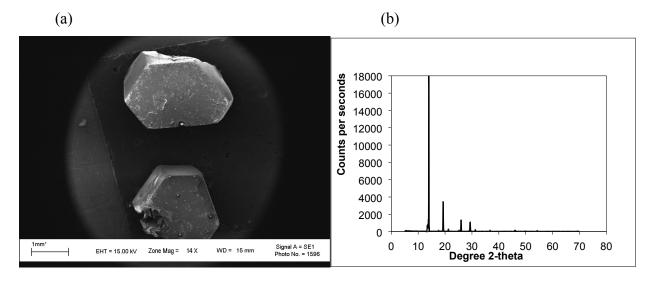



Fig S1. Pneumatic trough gas collection for measurement of depressurized CO_2 gas collected to crystallizer vent.

Fig. S2. a) SEM Image, b) XRD of naphthalene crystal. CO₂ 120 bar, temp. 45°C, depressurization 10 mL per min, FWHM for 2θ 13.96° [001] 0.0856.

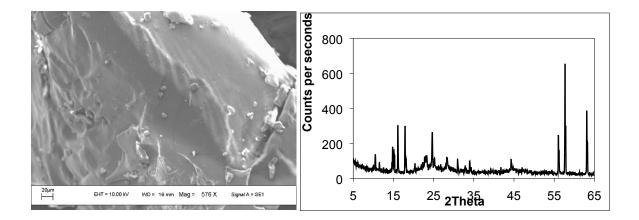


Fig. S3. a) SEM Image, b) XRD of anthracene crystal. CO_2 120 bar, temp. 45°C, depressurization rate 50 mL per min.