Tough, stretchable and compressive alginate hydrogels achieved by the non-covalent interactions

Zhanxin Jing*, Xiangyi Dai, Xueying Xian, Xiaomei Du, Mingneng Liao, Pengzhi Hong, Yong Li*

College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, Guangdong

524088, People's Republic of China

Supporting Information

^{*} Corresponding author.

E-mail address: jingzhan_xin@126.com (Zhanxin Jing); yongli6808@126.com (Yong Li).

 Table S1 Water contents of NaAlg/PAM semi-IPN hydrogels and CaAlg/PAM DN hydrogels

 Table S2 Mechanical properties of NaAlg/PAM semi-IPN hydrogels

Fig. S1 The photographs of NaAlg/PAM semi-IPN hydrogel demonstrating the excellent mechanical behaviors: under stretching (a) without and (b) with central notch, compressing (c), slicing with a knife (d) holding a weight of 100g (e)

Fig. S2 (a) Cyclic continuous step strain measurements of NaAlg5.0%/PAM2% hydrogel in which the strain was switched from 1% strain for 100s to 100% strain for 100s; (b) Cyclic continuous step strain measurements of NaAlg5.0%/PAM2% in which the strain was switched from 1% strain for 100s to various larger strains (100%, 200%, 300% and 400%) for 100s

Fig. S3 Equilibrium swelling ratios of NaAlg/PAM semi-IPN hydrogels with different compositions in different buffer solutions: (a) hydrogels with various SMA concentrations, (b) hydrogels with various SA concentrations

Table S1

Samples	Water content	Comulas	Water content
	(%)	Samples	(%)
NaAlg5.0%/PAM1%	39.9±2.4	CaAlg5.0%/PAM1%	67.0±2.1
NaAlg5.0%/PAM2%	44.7±2.3	CaAlg5.0%/PAM2%	73.4±1.4
NaAlg5.0%/PAM3%	51.8±1.8	CaAlg5.0%/PAM3%	68.1±3.6
NaAlg5.0%/PAM4%	49.2±2.3	CaAlg5.0%/PAM4%	70.7±0.6
NaAlg0%/PAM2%	52.0±2.8	CaAlg0%/PAM2%	72.3±1.6
NaAlg2.5%/PAM2%	57.5±1.8	CaAlg2.5%/PAM2%	73.2±1.6
NaAlg7.5%/PAM2%	49.1±2.8	CaAlg7.5%/PAM2%	68.8±0.2
NaAlg10.0%/PAM2%	56.6±3.4	CaAlg10.0%/PAM2%	72.9±2.5

Water content of NaAlg/PAM semi-IPN hydrogels and CaAlg/PAM DN hydrogels

Notes: The water contents of the samples were calculated by the following equation:

water content (%) = $\binom{(w_o - w_d)}{w_o} \times 100\%$, where W_o is the weight of the as-prepared sample and W_d is the dry

weight of the sample.

Table S2

Samples	Tensile strength (KPa)	Elongation at break (mm/mm)	Compressive strength (MPa) ^a
NaAlg5.0%/PAM1%	202.7±28.5	18.5±5.1	0.528±0.056
NaAlg5.0%/PAM2%	291.6±79.9	24.3±4.6	0.516±0.040
NaAlg5.0%/PAM3%	356.6±139.8	27.8±6.53	0.432±0.065
NaAlg5.0%/PAM4%	529.7±142.1	33.58±3.8	0.396±0.046
NaAlg0%/PAM2%	209.9±58.9	32.7±6.1	0.356±0.042
NaAlg2.5%/PAM2%	519.3±173.5	38.2±7.5	0.463±0.053
NaAlg7.5%/PAM2%	678.2±108.2	33.2±3.4	0.3278±0.087
NaAlg10.0%/PAM2%	397.8±111.6	25.3±4.2	0.306±0.043

Mechanical properties of NaAlg/PAM semi-IPN hydrogels

^{*a}at 80% strain on the compressive stress-strain curves.*</sup>

Table S3

Samples	Hydrogel type	Tensile strength ^a (KPa)	Elongation at break ^a (mm/mm)	References
Polyacrylamide/alginate/montmorillonite	Nanocomposite and interpenetrating network	106.2	10.1	[1]
Sodium alginate/polyacrylamide	Double network	530	6.89	[2]
Graphene oxide/sodium alginate/polyacrylamide	Nanocomposite	201.7	592	[3]
alginate/polyacrylamide	Double network	50.8	5.08	[4]
Sodium alginate/polyacrylamide	Semi-interpenetrating network	678.2	33.2	In this study
Calcium alginate/polyacrylamide	Double network	733.6	17.1	In this study

Comparison of mechanical properties of alginate-based hydrogels

^aMechanical properties of hydrogel samples prepared in optimal ratio.

References:

[1] X. Su and B. Chen, Carbohydr. Polym., 2018, 197, 497-507.

[2] Q. Zhou, H. Kang, M. Bielec, X. Wu, Q. Cheng, W. Wei and H. Dai, Cabohydr. Polym.,

2018, **197**, 292-304.

[3] J. Fan, Z. Shi, M. Lian, H. Li and J. Yin, J. Mater. Chem. A, 2013, 1, 7433-7443.

[4] B. Huang, R. Hu, Z. Xue, J. Zhao, Q. Li, T. Xia, W. Zhang and C. Lu, Carbohydr. Polym.,

2020, 231, 115736.

Fig. S1 The photographs of NaAlg/PAM semi hydrogel demonstrating the excellent mechanical behaviors: under stretching (a) without and (b) with central notch, compressing (c), slicing with a knife (d) holding a weight of 100g (e)

Fig. S2 (a) Cyclic continuous step strain measurements of NaAlg5.0%/PAM2% hydrogel in which the strain was switched from 1% strain for 100s to 100% strain for 100s; (b) Cyclic continuous step strain measurements of NaAlg5.0%/PAM2% in which the strain was switched from 1% strain for 100s to various larger strains (100%, 200%, 300% and 400%) for 100s

Fig. S3 Equilibrium swelling ratios of NaAlg/PAM hydrogels with different compositions in different buffer solutions: (a) hydrogels with various SMA concentrations, (b) hydrogels with various SA concentrations