Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supplementary Material

Synthesis of Narrow-Band Curled Carbon Nitride Nanosheets with High Specific Surface Area for Hydrogen Evolution from Water Splitting by Low-Temperature Aqueous Copolymerization to Form Copolymer

Wenbo Liu, Zhendong Zhang, Deguang Zhang, Runwei Wang, Zongtao Zhang*, Shilun Qiu

a State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China

E-mail: zzhang@jlu.edu.cn

Fig. S1 SEM image of the B-C₃N₄.

Fig. S2 TEM image of the B-C₃N₄.

Fig. S3 SEM image of the copolymer after thermal polycondensation.

Fig. S4 TEM image of $NS-C_3N_4$ with hierarchical porous structure.

Fig. S5 XRD image of copolymer after thermal polycondensation.

Fig. S6 thermogravimetric analysis-differential thermal analysis (TGA-DTA) measurement of copolymer without intercalation and copolymer after intercalation.

Fig. S7 UV–vis di□use-reflectance spectrum and wavelength-dependent AQE of NS-C₃N₄.

Fig. S8 VB XPS spectra of B-C₃N₄ and NS-C₃N₄.

Sample	Condition	BET (m^2/g)	HER ($\mu mol/g \cdot h$)	Times to B-	Ref
				C_3N_4	
$g-C_3N_4$ (w-N ₂)	Wet nitrogen and	211.2	1113.48 (3% Pt)	6	1
	reflux				
CN650NS	650 °C 4 h in air,	37.245	2627.8 (0.5 Pt)	24.6	2
	ultrasound 4 h,520				
	°C under hydrogen				
	argon mixture				
HC-CN	Ni-foam as the	39.24	808.5 (3% Pt)	20	3
	template				
NCN	vapor deposition	118	926 (3% Pt)	14	4
	method				
g-C ₃ N ₄ (580)-T	Thermal oxidation	92.8	1391(3% Pt)	—	5
	etching				
CN-2	Radio frequency	—	1227.8 (1% Pt)	—	6
	(RF) plasma				
	treatment				
NS-C ₃ N ₄	Thermal exfoliation	60.962	4061.8 (1% Pt)	37.5	This work
	copolymer				

copolymerTable S1. Summary of photocatalytic activity of g-C3N4 nanosheets with improved
photocatalytic activity.

Sample	C1s At. %	N1s At. %	O1s At. %
B-C ₃ N ₄	54.66	40.17	5.17
NS-C ₃ N ₄	54.96	42.2	2.84

Table S2. Atomic ratio of elements in $B-C_3N_4$ and $NS-C_3N_4$.

sample	CB (eV)	VB (eV)	Bandgap (eV)
B-C ₃ N ₄	-1.14	1.5	2.64
NS-C ₃ N ₄	-0.97	1.15	2.12

Table S3. Electronic band structure of $B-C_3N_4$ and $NS-C_3N_4$.

Reference

- 1. C. Fan, Q. Feng, G. Xu, J. Lv, Y. Zhang, J. Liu, Y. Qin and Y. Wu, Applied Surface Science, 2018, 427, 730-738.
- 2. T. Yu, Z. Hu, H. Wang and X. Tan, Journal of Materials Science, 2020, 55, 2118-2128.
- W. Xing, W. Tu, Z. Han, Y. Hu, Q. Meng and G. Chen, ACS Energy Letters, 2018, 3, 514-519.
 Z. Shu, C. Xie, J. Zhou, T. Li, Y. Chen, W. Wang, Y. Tan and Z. Zhao, Journal of Alloys and
- Z. Shu, C. Xie, J. Zhou, T. Li, Y. Chen, W. Wang, Y. Tan and Z. Zhao, Journal of Alloys and Compounds, 2018, 747, 140-148.
- 5. Y. Hong, E. Liu, J. Shi, X. Lin, L. Sheng, M. Zhang, L. Wang and J. Chen, international journal of hydrogen energy, 2019, 44, 7194-7204.
- 6. Q. Xiang, F. Li, D. Zhang, Y. Liao and H. Zhou, Applied Surface Science, 2019, 495, 143520.