Supplementary Material

A Mitochondrial-Targetable Dual-Functional Near-Infrared Fluorescent Probe to Monitor pH and H₂O₂ in Living Cells and Mice

Xueyuan Bi^a, Yingying Wang^a, Dandan Wang^a, Liming Liu^a, Wen Zhu^a, Junjie Zhang^b, Xiaoming Zha^{a,*}

^a School of Engineering, ^b School of Pharmacy, China Pharmaceutical University, 639

Longmian Avenue, Nanjing 211198, China

*Author for correspondence.

Email address: <u>xmzha@cpu.edu.cn</u> (X. Z.)

Table of contents

Page
1. The limit of detection measurement
2. Comparison of fluorescent probes for H_2O_2 with the similar active groupS3
3. Time-dependent fluorescence changes of target probe NIR-pH-H ₂ O ₂ for H ₂ O ₂ S4
4. The response between NIR-pH-H ₂ O ₂ and H_2O_2 at different pHS5
5. Fluorescent imaging in living cells
6. ¹ H NMR, ¹³ C NMR and HRMS spectrum of the probe NIR-pH-H₂O₂S7
7. The HPLC purity of the probe NIR-pH-H₂O₂
HRMS spectrum of the reaction product of the probe $NIR-pH-H_2O_2$ with H_2O_2S11
9. HPLC analysis of the reaction product of the probe $NIR-pH-H_2O_2$ with H_2O_2S11
10.References

S2

8.

1. The limit of detection measurement

The detection limit of **NIR-pH-H₂O₂** towards H_2O_2 was determined through fluorescence titration. The standard deviation of the blank solution was also measured for 10 times. After the linear slope of fluorescence intensity vs. concentrations of H_2O_2 was obtained, the detection of limit (LOD) was calculated by following equation:

$$LOD = 3\sigma/\kappa$$

Where σ denotes the standard deviation of blank measurement, κ denotes the slope of the fluorescence intensity vs. H₂O₂ concentrations.

2. Comparison of fluorescent probes for H_2O_2 with the similar active group

Probes	H ₂ O ₂ response			pН	Terra in a		
	Stokes	LOD (µM)	Response	Detection	Response	Imaging	Reference
	Shift (nm)		time (min)	medium		application	
VQRKRQKLMP-NH2	148	*	120	*	NO	HeLa cells	1
HO ^{rB} OH							
N N OH	50	0.037	60	Tris buffer	NO	LNCaP-luc cells,	2
HO.B.						mice	
	50	0.5	60	Tris buffer	NO	PC3M-luc cells,	3
HO _B OH						mice	
	105	1.67	*	PBS buffer	NO	HeLa cells,	4
он >				(1% EtOH)		liver tissue	
	120	0.0056	35	DMSO:PBS	NO	HeLa cells	5
, , , , , , , , , , , , , , , , , , ,				(1:1, v/v)			

Table S1. Comparison of NIR-pH-H₂O₂ with fluorescent H₂O₂ probes in literature.

	192	0.26	120	PBS buffer	NO	SKOV-3 cells	6
HOGE CH							
	50	1.4	80	alkaline	NO	Endogenous	7
OH		(pH 8)	(pH 8),	environment		H ₂ O ₂ in RAW	
		0.99	60	(pH > 8)		264.7 and A431	
в он		(pH 10)	(pH 10)			cells, mice	
	120	2.097	30	PBS buffer	p <i>K</i> a = 6.17	Exogenous and	This work
			(pH 7.4)	(6% CH ₃ CN)	(pH = 4 ~ 8)	endogenous	
						H ₂ O ₂ and pH in	
ОН						MCF-7 and Hela	
						cells, mice	

* The data was not mentioned.

3. Time-dependent fluorescence changes of target probe NIR-pH-H₂O₂ for H₂O₂

Fig. S1 Time-dependent fluorescent emission changes of NIR-pH-H₂O₂ (10 μ M) with time after addition 200 μ M H₂O₂ in PBS buffer (6% CH₃CN). ($\lambda_{ex} = 560$ nm, $\lambda_{em} = 680$ nm)

4. The response between NIR-pH-H₂O₂ and H₂O₂ at different pH

Fig. S2 Fluorescence intensity (at 680 nm) of NIR-pH-H₂O₂ (10 μ M) and NIR-pH- H₂O₂ + H₂O₂ (200 μ M) in 50 mM PBS bu \Box er at pH 1 to 10. ($\lambda_{ex} = 560$ nm, $\lambda_{em} = 680$ nm).

5. Fluorescent imaging in living cells

Fig. S3 MTT toxicity test for determination of cellular activity in MCF-7 cells (A) and Hela cells
(B) treated with different concentrations (10, 15, 20, 25, 30, 35, 40, 45 and 50 μM) of NIR-pH-H₂O₂ for 24 hours.

Fig. S4 Fluorescent microscopic images of Hela cells with **NIR-pH-H**₂**O**₂ with different pH (A) and rapamycia (B). Scale bar: 10 μm.

Fig. S5 Fluorescence images of NIR-pH-H₂O₂ (10 μ M) with various concentrations of H₂O₂ solution in Hela cells. Scale bar: 10 μ m.

Fig. S6 Confocal fluorescence images of H_2O_2 in MCF-7 cells. Cells were pretreated with NIR-pH-H₂O₂ (10 µM) and H_2O_2 (500 µM) for 0, 10, 20, 30 min respectively, then imaged. Scale bar: 10 µm. ($\lambda_{ex} = 555$ nm, $\lambda_{em} = 680$ nm for the red channel).

Fig. S7 Confocal fluorescence images of H_2O_2 in Hela cells. Cells were pretreated with NIR-pH-H₂O₂ (10 µM) and H_2O_2 (500 µM) for 0, 10, 20, 30 min respectively, then imaged. Scale bar: 10 µm. ($\lambda_{ex} = 555$ nm, $\lambda_{em} = 680$ nm for the red channel).

6. ¹H NMR, ¹³C NMR and MS spectrum of the probe NIR-pH-H₂O₂

Fig. S8 ¹H NMR spectrum of the probe NIR-pH-H₂O₂.

Fig. S9 ¹³C NMR spectrum of the probe NIR-pH-H₂O₂

Fig. S10 HRMS spectrum of the probe NIR-pH-H₂O₂

7. The HPLC purity of the probe NIR-pH-H₂O₂

总量 :	1.01170e5	4171.49841

Fig. S11 The HPLC purity of NIR-pH-H₂O₂.

8. HRMS spectrum of the reaction product of the probe NIR-pH-H₂O₂ with

 H_2O_2

Fig. S12 HRMS spectrum of the reaction product of the probe NIR-pH-H₂O₂ with H₂O₂.

9. HPLC analysis of the reaction product of the probe NIR-pH-H₂O₂ with H₂O₂

Fig. S13 HPLC changes of **NIR-pH-H₂O₂** (50 μ M), **TP-NIR-OH**, **NIR-pH-H₂O₂** (50 μ M) + H₂O₂ (25 μ M) and **NIR-pH-H₂O₂** (50 μ M) + H₂O₂ (100 μ M) in PBS-Buffer (CH3CN, V/V, 6%) at pH 7.4. (A) The probe **NIR-pH-H₂O₂** (50 μ M) (B) The fluorophore **TP-NIR-OH** (50 μ M) (C) the probe **NIR-pH-H₂O₂** (50 μ M) + H₂O₂ (25 μ M). (D) The probe **NIR-pH-H₂O₂** (50 μ M) + H₂O₂

(100 µM).

References

- 1 Y. Wen, K. Liu, H. Yang, Y. Li, H. Lan, Y. Liu, X. Zhang, T. Yi, *Anal. Chem.*, 2014, **86**, 9970–9976.
- 2 G.C. van de Bittner, E.A. Dubikovskaya, C.R. Bertozzi, C.J. Chang, *Proc. Natl. Acad. Sci. U. S. A.*, 2010, **107**, 21316–21321.
- 3 G.C. van de Bittner, C.R. Bertozzi, C.J. Chang, J. Am. Chem. Soc., 2013, 135, 1783–1795.
- 4 L. Zhou, H. Ding, W. Zhao, S. Hu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, **206**, 529–534.
- 5 T. Wang, X. Yang, J. Men, J. Zhou, H. Zhang, *Luminescence*, 2020, **35**, 208–214.
- 6 P. Zhao, K. Wang, X. Zhu, Y. Zhou, J. Wu, Dyes & Pigment., 2018, 155, 143–149.
- 7 K. Liu, H. Shang, X. Kong, M. Ren, J.-Y. Wang, Y. Liu, W. Lin, *Biomaterials*, 2016, **100**, 162–171.