Supplementary Information

Determination and Characterisation of the Surface Charge Properties of the Bacteriophage M13 to Assist Bio-nanoengineering

Paolo Passaretti,^{a*} Yiwei Sun,^b Timothy R. Dafforn^c and Pola Goldberg Oppenheimer^d

^a Institute of Cancer and Genomic Science, University of Birmingham, Birmingham, B15 2TT, UK

^b School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK

° School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK

^d School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK

Table of Contents

1. Table S1	2
2. Table S2	3
3. Table S3	3
4. Table S4	4
5. Figure S1	5
6. Table S5	6
7. Table S6	8
8. Table S7	
9. Table S8	
10. Code S1	14
11. Code S2	15
12. Figure S2	
13. References	17

	M13	Ref.	fd	Ref.	Pf1	Ref.
Ff filamentous phage class	Ι		I		II	
Genome ID	NC_003287.2		J02451.1		NC_001331.1	
Genome type	Circular ssDNA		Circular ssDNA		Circular ssDNA	
Genome length (bp)	6407		6408		7349	
Percent Identity Matrix – Clustal 2.1	100%		96.99%		50.11%	
Virion length (nm)	850-900	1,2	760-870	2	~ 2000	3
Virion diameter (nm)	~ 6.6	1	~ 5.6	2	~ 7	3
Number of major coat proteins per phage	2700	4	2700	4	7600	4
Coat proteins	PIII, PVI, PVII, PVIII and PIX	2	III, VI, VII, VIII and IX	5	p3, p6, p7, p8 and p9	6
Molecular weight (Da)	16.8 × 10 ⁶	7	16.4 × 10 ⁶	8	37.5 × 10 ⁶	4

Table S1. Comparison between of M13, fd and Pf1

Further information on the differences between M13, *fd* and Pf1 can be found in the literature.^{3,4,9–12}

	Amino acids (aa)	Base pairs (bp)	Number of copies	MW (Da)	MW _{tot} (Da)
PIII	406		5	42 579.09	212 895.45
PVI	112		5	12 350.09	61 750.45
PVII	33	n/a	5	3 602.24	18 011.20
ΡΙΧ	32		5	3 653.29	18 266.45
PVIII	50		2700	5 238.04	14 142 708.00
ssDNA	n/a	6407	1	1 976 583.36	n/a
	N	lass of protein c	apsid: 14 453 63 ⁻	1.55 Da	
	Mass of p	rotein capsid an	d nucleic acid: 1	6 430 214.91 Da	

 Table S2.
 Molecular weight of M13 with calculated values

The molecular weight (MW) of proteins shown in **Table S2** were calculated using ExPASy Compute pl/Mw tool, available at the following link <u>https://web.expasy.org/compute_pi/</u>.^{13–15} The MW of the ssDNA (M13 genome sequence available here <u>https://www.ebi.ac.uk/ena/data/view/V00604&display=fasta</u>) was calculated using DNA calculator (nucleic acid parameters: DNA; single strand; circular), available at the following link <u>http://www.molbiotools.com/dnacalculator.html</u>.

	Amino acids (aa)	Base pairs (bp)	Number of copies	MW (Da)	MW _{tot} (Da)	References
PIII	406		5	42 675	213 375	
PVI	112		5	12 264	61 320	
PVII	33	n/a	5	3 587	17 935	16
ΡΙΧ	32		5	3 654	18 270	
PVIII	50		2700	5 234	14 131 800	
ssDNA	n/a	6407	1	2 × 10 ⁶	n/a	2,17
		Mass of p	protein capsid: 14	4 442 700 Da		
	Mas	s of protein c	apsid and nuclei	c acid: 16 442 70	00 Da	

Table S3. Molecular weight of M13 with measured values

The total mass calculated is in agreement with the value proposed by Beck *et al.* (16.8 $\times 10^6 \pm 0.8 \text{ Da})^7$ and with the values obtained *via* combining the data in **Table S3**.

PDB	ID: 2MJZ	-	¬	>	3	×	~	N	в	٩	υ	σ	Φ	÷	6	ء	Average (Ų)	Subunits sum (Ų)	M13 areas (Ų)	M13 areas (nm ²)	M13 areas (µm²)
	Free	5381	5379	5380	5378	5381	5380	5379	5574	5379	5380	5380	5380	5382	5377	5379	5393 ± 48				
ə	Assembled	5287	5285	5287	5285	5287	5284	5282	5283	5282	5283	5286	5286	5288	5283	5286	5285 ± 2	79,273	14,269,205	142692	0.143
oetru	Core																	81,193	14,614,726	146,147	0.146
ılar s	Asbl_ext	3051	3051	3051	3050	3052	3051	3052	3050	3051	3051	3054	3054	3054	3053	3054	3052 ± 1	45,777	8,239,940	82,399	0.082
nsəlo	Core_ext																	46,029	8,285,259	82,853	0.083
M	Asbl_int	2232	2231	2232	2231	2231	2229	2227	2229	2227	2228	2229	2228	2230	2226	2228	2229 ± 2	33,438	6,018,801	60,188	0.060
	Core_int																	33,053	5,949,506	59,495	0.059
e	Free	4636	4639	4636	4636	4634	4635	4634	4807	4807	4634	4636	4634	4634	4636	4636	4658 ± 58				
nusce	Assembled	1820	1820	1817	1817	1818	1772	1774	1775	1774	1771	1811	1809	1810	1811	1810	1801 ± 20	27,009	4,861,577	48,616	0.049
ns əld	Core																	27,021	4,863,846	48,638	0.049
lissə:	Asbl_ext	1337	1339	1335	1336	1337	1336	1337	1338	1337	1334	1374	1372	1373	1374	1373	1349 ± 17	20,233	3,641,851	36,419	0.036
oos fr	Core_ext																	20,241	3,643,327	36,433	0.036
olver	Asbl_int	483	482	482	482	481	436	437	438	437	436	437	437	437	437	437	452 ± 21	6779	1,220,141	12,201	0.012
s	Core_int																	6776	1,219,697	12,197	0.012
	Free	Τh	e area of	each PV	III proteir	ı taken ir	dividual	y, not ass	sembled	to form t	he capsic	T									
	Assembled	μ	e area of	each PV	III proteir	1 assemb	led to for	m the ca	ipsid, exc	sluding th	leir unex	posed pc	ortions du	ue to the	interacti	ions with	the surrounding	PVIIIs			
	Core	Thε	e area of	the caps	id portior	compos	the of the	15 chair	s named	1 Τ, U, V,	W, Χ, Υ,	; Z, a, b,	c, d, e, f,	, g and h	trom th€	e PDB file	e 2MJZ, excludir	ig their unexpo	osed portions		
	Asbl_ext	ΨĒ	e area of GDDPAK	each as: AAFNSL	sembled QASATE	PVIII pro	tein exclu VAMAVV	uding the	area of t	the residu	les in gre	een (inne	ar portion). This c	orrespor	Ids to the	contribution of	a single PVII	I to the M13 exte	ernal total s	urface.
	Core_ext	ΨĒ	e area of GDDPAK	the core	excludin	g the are YIGY AV	a of the r	esidues i	in green	(inner po	rtion). Th	nis corres	sponds to	o the cor	Itribution	of 15	ē.	VIIIs to the M1	3 external t	ital surface	area.
	Asbl_int	Å ∄	e area of GDDPAK	each as	embled	PVIII pro	tein exclu	IVGATIC	area of t	the residu FTSKAS	les in blu	le (exteri	nal portic	on). This	correspo	onds to t	he contribution o	of a single PVII	II to the M13 inte	ernal total s	urface.
	Core_int	Ϋ́́́	e area of GDDPAK	the core	excludin QASATE	g the are <u>YIGY</u> AV	a of the r	esidues i IVGATIG	in blue (∈ ≱IKLFKK	external p FTSKAS	ortion). 7	This corre	esponds	to the co	ontributic	on of 1	5 P	VIIIs to the M1	3 internal total s	urface area	

areas
surface
M13
le S4.
Tabl

The surface area in **Table S4** were calculated with pyMOL selecting individual PVIII chains (free and assembled) and the central 15 chains all together (core). The values were calculated using the molecular and solvent accessible surface parameters, respectively. Note, that the values of subunits sum of Assembled, Asbl_ext and Asbl_int correspond to the sum of the chains between T to h, while Core, Core_ext and Core_int correspond to the values of the 15 chains taken all together. The M13 areas were calculated as: (Subunits sum/15)*2700.

Figure S1. M13 surface areas

The surface of PVIII according to Table S4: (a) free, (b) assembled and (c) core.

Table S5. pKa1 models

Title	Equation	Y axes: charge – X axes: pH
A1	(1 / (10^(ph - 3.69) + 1)) * (1)	
A2	(1 - 1 / (10^(ph - 4.25) + 1)) * (-1)	-0.2 -0.4 -0.6 -1.0
A3	(1 - 1 / (10^(ph - 3.65) + 1)) * (-1)	-0.2 -0.4 -0.8 -1.0
Α4	(1 - 1 / (10^(ph - 3.65) + 1)) * (-1)	-0.2 -0.4 -0.6 -0.8 -1.0
A5	(1 / (10^(ph - 10.53) + 1)) * (1)	

A6	(1 - 1 / (10^(ph - 4.25) + 1)) * (-1)	
Α7	(1 - 1 / (10^(ph - 10.07) + 1)) * (-1)	-0.2 -0.4 -0.6 -0.8 -1.0
A 8	(1 - 1 / (10^(ph - 10.07) + 1)) * (-1)	-0.4 -0.4 -0.8 -1.0
	A _{tot} = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8	
	A _{tot} = A1 + A2 + A3 + A4 + A5 + A6	

Table S6. pKa₁ + exposure models

Title	Equation	Y axes: charge – X axes: pH
B1	(1 / (10^(ph - 3.69) + 1)) * (1)	
B2	(1 - 1 / (10^(ph - 4.25) + 1)) * (-1)	-0.2 -0.4 -0.6 -0.8 -1.0
В3	(1 - 1 / (10^(ph - 3.65) + 1)) * (-1)	-0.2 -0.4 -0.6 -1.0
B4	(1 - 1 / (10^(ph - 3.65) + 1)) * (-0.58)	-0.1 -0.2 -0.3 -0.4 -0.5 -0.6
B5	(1 / (10^(ph - 10.53) + 1)) * (1)	

Table S7. pKa₂ models

Title	Equation	Y axes: charge – X axes: pH
C1	(1 / (10^(ph - 8.62) + 1)) * (1)	
C2	(1 - 1 / (10^(ph - 3.45) + 1)) * (-1)	-0.2 -0.4 -0.6 -0.8 -1.0
C3	(1 - 1 / (10^(ph - 3.11) + 1)) * (-1)	-0.4 -0.8 -1.0
C4	(1 - 1 / (10^(ph - 4.02) + 1)) * (-1)	-0.6 -0.8 -1.0
C5	(1 / (10^(ph - 11.56) + 1)) * (1)	

Table S8. pKa₂ + exposure models

Title	Equation	Y axes: charge – X axes: pH
D1	(1 / (10^(ph - 8.62) + 1)) * (1)	
D2	(1 - 1 / (10^(ph - 3.45) + 1)) * (-1)	
D3	(1 - 1 / (10^(ph - 3.11) + 1)) * (-1)	-0.2 -0.4 -0.6 -0.8 -1.0
D4	(1 - 1 / (10^(ph - 4.02) + 1)) * (-0.58)	-0.1 -0.2 -0.3 -0.4 -0.5 -0.6
D5	(1 / (10^(ph - 11.56) + 1)) * (1)	

Following the code to calculate the charge of the PVIII protein based on the selected amino acids (A1, E2, D4, D5, K8, E20, Y21, Y24). The following code can be used in R to calculate the IEP of modified versions of the PVIII changing some some parameter accordingly (**Code S1**). More information on how to use it are included in the code as well as two examples are listed below (**Code S2 and S3**).

```
# Activate the necessary libraries
library(ggplot2)
# Building the X axes which is the pH scale
pH <- seq(1, 12, by=0.001)
# The amino acid listed below are the residues contributing to the total charge
of the M13 wild type
# Adjust the value row:9 column:12 accordingly with the number of residues of
your modified M13
num <- c(1:8)
# Add in brackets the amino acid name and position of your modified M13
name <- c("A1", "E2", "D4", "D5", "K8", "E20", "Y21", "Y24")
# Add the pKa of the corresponding amino acid
pka <- c(8.64, 3.45, 3.11, 4.02, 11.56, 5.21, 14.74, 13.14)
# Add 1 or 0 if the residue is positively or negatively charged
char <- c(1, 0, 0, 0, 1, 0, 0, 0)
# Add the level of exposure to the solvent of the corresponding residue
exp <- c(1, 1, 1, 0.58, 1, 0.75, 0.3, 0.77)
# Create a data frame with all data
PVIII <- data.frame(num, name, pka, char, exp)</pre>
PVIII
for(i in num){
if(PVIII$char[i] == 1){
 assign(sprintf("amino.acid %d", i), ((1/(10^(pH - PVIII$pka[i]) + 1)) *
(PVIII$exp[i])), envir = .GlobalEnv)
 else {
 assign(sprintf("amino.acid_%d", i), ((1-1/(10^(pH - PVIII$pka[i]) + 1)) * (-
PVIII$exp[i])), envir = .GlobalEnv)
rm(i)
}
# Once obtained the vectors named "amino.acis n", if more than 8, add them to the
vector tot (Eg: amino.acid 9 + amino.acid 10)
tot <- amino.acid 1 + amino.acid 2 + amino.acid 3 + amino.acid 4 +
       amino.acid 5 + amino.acid 6 + amino.acid 7 + amino.acid 8
# IEP is the isoelectric point generated from the modified PVIII
IEP <- pH[which.min(abs(tot-0))]</pre>
# IEP2 is the closest value to zero of the generated charge values
IEP2 <- tot[which.min(abs(tot-0))]</pre>
result <- data.frame(pH, tot, IEP2)
result
plotIEP <- ggplot(result, aes(x=pH, y=tot, lable=pH)) +</pre>
           geom point(size=0.5, shape=1, color="red") +
           geom text(aes(label=ifelse(tot==IEP2,as.character(pH),'')),hjust=-
0.5, vjust=-1.5) +
           xlab("pH") +
           ylab("Number of charges") +
           theme light()
plotIEP <- plotIEP + geom hline(yintercept=0, linetype="solid", color = "black",
size=0.8)
plotIEP <- plotIEP + geom_vline(xintercept=IEP, linetype="solid", color =</pre>
"black", size=0.8)
plotIEP
```

Code S1. IEP calculator for PVIII protein and other modified versions

Code S2. IEP calculator used to calculate a modified version of the PVIII

```
# Example: PVIII protein with 3 aspartic and 1 glutamic acids at the N-terminus
in position 2, 3, 4 and 5
pH <- seq(1, 12, by=0.001)
num <- c(1:12)
name <- c("A1", "D2x", "D3x", "D4x", "E5x" "E2", "D4", "D5", "K8", "E20", "Y21",
"Y24")
pka <- c(8.64, 3.11, 3.11, 3.11, 3.45, 3.45, 3.11, 4.02, 11.56, 5.21, 14.74,
13.14)
char <- c(1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0)
exp <- c(1, 1, 1, 1, 1, 1, 1, 0.58, 1, 0.75, 0.3, 0.77)
PVIII <- data.frame(num, name, pka, char, exp)</pre>
PVIII
for(i in num){
  if(PVIII$char[i] == 1) {
    assign(sprintf("amino.acid_%d", i), ((1/(10^(pH - PVIII$pka[i]) + 1)) *
(PVIII$exp[i])), envir = .GlobalEnv)
  }
  else {
    assign(sprintf("amino.acid_%d", i), ((1-1/(10^(pH - PVIII$pka[i]) + 1)) * (-
PVIII$exp[i])), envir = .GlobalEnv)
 }
 rm(i)
}
tot <- amino.acid 1 + amino.acid 2 + amino.acid 3 + amino.acid 4 + amino.acid 5 +
amino.acid_6 + amino.acid_7 + amino.acid_8 +
 amino.acid 9 + amino.acid 10 + amino.acid 11 + amino.acid 12
IEP <- pH[which.min(abs(tot-0))]</pre>
IEP2 <- tot[which.min(abs(tot-0))]</pre>
result <- data.frame(pH, tot, IEP2)
result
plotIEP <- ggplot(result, aes(x=pH, y=tot, lable=pH)) +</pre>
  geom point(size=0.5, shape=1, color="red") +
  geom_text(aes(label=ifelse(tot==IEP2, as.character(pH), '')), hjust=-0.5, vjust=-
1.5) +
 xlab("pH") +
  ylab("Number of charges") +
  theme light()
plotIEP - plotIEP + geom_hline(yintercept=0, linetype="solid", color = "black",
size=0.8)
plotIEP <- plotIEP + geom_vline(xintercept=IEP, linetype="solid", color =</pre>
"black", size=0.8)
plotIEP
```


Figure S2. Determination of the IEP of M13

(a) The ζ -potential values were fitted with a polynomial function of order 5 and compared to the model pKa₂ which includes tyrosins and exposure level. The final IEP value was calculated *via* averaging the IEPs fom both curves. (b) The parameters of the fitting function.

References

- 1. Marvin, D. A. & Hoffmann-Berling, H. Physical and Chemical Properties of Two New Small Bacteriophages. *Nat. Publ. Gr.* **4866**, 517–518 (1963).
- 2. Marvin, D. A. & Hohn, B. Filamentous Bacterial Viruses. *Bacteriol. Rev.* 33, 172–209 (1969).
- 3. Wolkers, W. F., Haris, P. I., Pistorius, A. M. A., Chapman, D. & Hemminga, M. A. FT-IR Spectroscopy of the Major Coat Protein of M13 and Pf1 in the Phage and Reconstituted into Phospholipid Systems. *Biochemistry* **34**, 7825–7833 (1995).
- 4. Torbet, J. & Maret, G. High-field magnetic birefringence study of the structure of rodlike phages Pf1 and fd in solution. *Biopolymers* **20**, 2657–2669 (1981).
- 5. Marvin, D. A. Filamentous Phage Structure, Infection and Assembly. *Curr. Opin. Struct. Biol.* **8**, 150–158 (1998).
- 6. Stubbs, G. & Kendall, A. Helical viruses. *Adv. Exp. Med. Biol.* **726**, 631–658 (2012).
- 7. Beck, K. & Duenk, R. M. Flexibility of Bacteriophage M13: Comparison of Hydrodynamic Measurements with Electron Microscopy. *J. Struct. Biol.* **105**, 22–27 (1990).
- 8. Forsheit, A. B. & Ray, D. S. Conformations of the Single-Stranded DNA of Bacteriophage M13. *Proc. Natl. Acad. Sci.* **67**, 1534–1541 (1970).
- 9. Day, L. A. & Wiseman, R. L. A Comparison of DNA Packaging in the Virions of fd, Xf, and Pf1. *Cold Spring Harb. Monogr. Arch.* **8**, 605–625 (1978).
- 10. Day, L. A., Casadevall, A., Prescott, B. & Thomas, G. J. Raman Spectroscopy of Mercury(II) Binding to Two Filamentous Viruses: Ff (fd, M13, f1) and Pf1. *Biochemistry* **27**, 706–711 (1988).
- 11. Casadevall, A. & Day, L. A. DNA Packing in the Filamentous Viruses fd, Xf, Pfl and Pf3. *Nucleic Acids Res.* **10**, 2467–2481 (1982).
- 12. Hill, D. F., Short, N. J., Perham, R. N. & Petersen', G. B. DNA Sequence of the Filamentous Bacteriophage Pfl. I. Nol. Biol vol. 218 (1991).
- 13. Bjellqvist, B. *et al.* The Focusing Positions of Polypeptides in Immobilized pH Gradients can be Predicted from their Amino Acid Sequences. *Electrophoresis* (1993) doi:10.1002/elps.11501401163.
- 14. Bjellqvist, B., Basse, B., Olsen, E. & Celis, J. E. Reference points for comparisons of twodimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions. *Electrophoresis* **15**, 529–539 (1994).
- 15. Gasteiger, E. et al. The Proteomics Protocols Handbook Chapter 52: Protein Identification and Analysis Tools on the ExPASy Server. The Proteomics Protocols Handbook (2005). doi:10.1385/1592598900.
- 16. van Wezenbeek, P. M. G. F. G. F., Hulsebos, T. J. M. M. & Schoenmakers, J. G. G. G. Nucleotide Sequence of the Filamentous Bacteriophage M13 DNA Genome: Comparison with Phage fd. *Gene* **11**, 129–148 (1980).
- 17. Ray, D. S., Bscheider, H. P. & Hofschneider, P. H. Replication of the Single-Stranded DNA of the Male-Specific Bacteriophage M13. Isolation of Intracellular Forms of Phage-Specific DNA. *J. Mol. Biol.* **21**, 473–483 (1966).