Supporting Information

Elucidating sensing mechanisms of a pyrene-excimer based calix[4]arene for ratiometric detection of Hg(II) and Ag (I) and chemosensor behaviour as INHIBITION or IMPLICATION logic gates

Julio Rodríguez-Lavado*^a, Alejandro Lorente^a, Erick Flores^b, Andrés Ochoa^a, Fernando Godoy^b, Pablo Jaque^a, Claudio Saitz^{*a}

 ^a Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, Santiago, Chile
 ^bDepartamento de Química de los Materiales, Universidad de Santiago de Chile, Libertador Bernardo O'Higgins 3363, Santiago, RM

email of the corresponding authors: julio.rodriguez@ciq.uchile.cl, clsaitz@ciq.uchile.cl

I.		Experimental Information
	a)	Figures S1 to S7 and Table S12-5
	b)	NMR Spectra6-9
	c)	Mass Spectra0
II.		Conformational Analysis of derivative 1 and Frontier Molecular Orbitals
		Conformers derivative 1, Figure S1310
		Frontier Molecular Orbitals of 2a, Figure S1411
Ш	[.	Boolean Operations for two inputs12

Figure S1. Normalized fluorescence intensities of **2** at different dilutions (CH₃CN/DMSO 99:1).

Figure S2. Fluorescence spectra of 2 (1.15 μ M in CH₃C/DMSO 99:1) in presence of 2 equilvalents of NBu₄ClO₄.

Figure S3. Calibration curve of **2** with $Hg^{2+}(a)$ and Ag+(b) in (CH₃CN/DMSO 99:1) for LOD determination.

Figure S4. Job Plot for a complex of compound **2** and Ag⁺ ion (λ =372 nm, CH₃CN/DMSO 99:1)

Figure S5. Job Plot for a complex of compound **2** and Hg²⁺ ion (λ =372 nm, CH₃CN/DMSO 99:1)

Figure S6. Hill Plots for the complexes $2:Ag^+(a)$ and $2:Hg^{2+}(b)$ in CH₃CN/DMSO (99:1)

Figure S7. a) Interference studies of **2** in presence of Ag⁺, Hg²⁺, and cation mixture and (b) competitive interferent study of **2** with Ag⁺ and Hg²⁺

Ref	LOD $Hg^{2+}(nM)$	LOD Ag ⁺ (nM)	Solvent
65	70	-	THF
67	100	-	THF/H ₂ O 9:1
64	36	-	HEPES/CH ₃ CN 3:7
66	12500	-	MeOH
69	-	68	Acetic/Acetate Buffer
68	-	200	DMF
2 ^a	2.09	8.11	CH ₃ CN

Table S1. Comparative Results for Hg^{2+} and Ag^+ detection probes. ^aCompound 2 studied in the present work

Figure S8. ¹H NMR Spectrum (300 MHz, 298 K) of compound 1.

Figure S9. ³C NMR Spectrum (75.5 MHz, 298 K) of compound 1.

Figure S10. ¹H NMR Spectrum (300 MHz, 298 K) of compound 2.

Figure S11. ¹³C NMR Spectrum (75.5 MHz, 298 K) of compound 2.

b) Mass Spectra

Figure S13. HR-MS (ESI) of compound 2.

II. Conformational analysis of derivative 1 and Frontier Molecular Orbitals

Figure S14. Highest (H-1 and H) and lowest (L and L+1) molecular orbitals of 2a.

Frontiers Molecular Orbitals of 2a

Figure S15. Highest (H-1 and H) and lowest (L and L+1) molecular orbitals of 2a.

III. Boolean operations for two inputs

Operation N°	Commutative to operation N°	Result for				Entry	Meaning	Logic gate
		A=0 B=0	A=0 B=1	A=1 B=0	A=1 B=1			
0	15	0	0	0	0	'0' constant	'0' constant	ZERO
1	14	0	0	0	1	Conjuction	A and B	AND
2	-	0	0	1	0	Exclusion	A excludes B	INHIBIT
3	12	0	0	1	1	1st variable	А	ID A
4	-	0	1	0	0	Exclusion	B excluding A	INHIBIT
5	10	0	1	0	1	2nd variable	В	ID B
6	9	0	1	1	0	Nonequivalence	Either A or B	XOR
7	8	0	1	1	1	Disjunction	A or B	OR
8	7	1	0	0	0	Nondisjunction	Neither A or B	NOR
9	6	1	0	0	1	Equivalence operation	A equivalent to B	EQU
10	5	1	0	1	0	Negation of variable B	Not B	INV B
11	-	1	0	1	1	Implication	B implies A	IMPLICATION
12	3	1	1	0	0	Negation of variable A	Not A	INV A
13	-	1	1	0	1	Implication	A implies B	IMPLICATION
14	1	1	1	1	0	Nonconjunction	No both A and B	NAND
15	0	1	1	1	1	'1' constant	'1' constant	ONE

 Table S2. Table of Boolean Operations for two inputs [1]