Mild Deprotection of *N-tert*-butyloxycarbonyl (*N*-Boc) Group Using Oxalyl Chloride

Nathaniel George[‡], Samuel Ofori[‡] and Samuel G. Awuah^{*} Department of Chemistry, University of Kentucky, Lexington Kentucky 40506, United States Correspondence to: awuah@uky.edu

Table of Contents

¹ H NMR spectrum of <i>tert</i> -butyl <i>N</i> -(2-isopropylphenyl)carbamate in CDCl ₃	S3
¹³ C NMR spectrum of <i>tert</i> -butyl <i>N</i> -(2-isopropylphenyl)carbamate in CDCl ₃	S3
¹ H NMR spectrum of <i>tert</i> -butyl <i>N</i> -(1-naphthyl)carbamate in CDCl ₃	S4
¹³ C NMR spectrum of <i>tert</i> -butyl <i>N</i> -(1-naphthyl)carbamate in CDCl ₃	S4
¹ H NMR spectrum of <i>tert</i> -butyl <i>N</i> -(3-chlorophenyl)carbamate in CDCl ₃	S5
¹³ C NMR spectrum of <i>tert</i> -butyl <i>N</i> -(3-chlorophenyl)carbamate in CDCl ₃	S5
¹ H NMR spectrum of <i>tert</i> -butyl <i>N</i> -(3-chloro-4-fluorophenyl)carbamate in CDCl ₃	S6
¹³ C NMR spectrum of <i>tert</i> -butyl <i>N</i> -(3-chloro-4-fluorophenyl)carbamate in CDCl ₃	S6
¹ H NMR spectrum of <i>tert</i> -butyl <i>N</i> -(2,4,6-trimethylphenyl)carbamate in CDCl ₃	S7
¹³ C NMR spectrum of <i>tert</i> -butyl <i>N</i> -(2,4,6-trimethylphenyl)carbamate in CDCl ₃	S7
¹ H NMR spectrum of <i>tert</i> -butyl <i>N</i> -(2,6-diisopropylphenyl)carbamate in CDCl ₃	S8
¹³ C NMR spectrum of <i>tert</i> -butyl <i>N</i> -(2,6-diisopropylphenyl)carbamate in CDCl ₃	S8
¹ H NMR spectrum of <i>tert</i> -butyl <i>N</i> -(4-nitrophenyl)carbamate in CDCl ₃	S9
¹³ C NMR spectrum of <i>tert</i> -butyl <i>N</i> -(4-nitrophenyl)carbamate in CDCl ₃	
¹ H NMR spectrum of <i>tert</i> -butyl <i>N</i> -(3-bromo-4-fluorophenyl)carbamate in CDCl ₃	S10
¹³ C NMR spectrum of <i>tert</i> -butyl <i>N</i> -(3-bromo-4-fluorophenyl)carbamate in CDCl ₃	S10
¹ H NMR spectrum of <i>tert</i> -Butyl (4-iodophenyl)carbamate in CDCl ₃	S11
¹³ C NMR spectrum of <i>tert</i> -Butyl (4-iodophenyl)carbamate in CDCl ₃	S11
¹ H NMR spectrum of <i>tert</i> -butyl <i>N</i> -(N-(2-Methoxyphenyl)piperazine)carbamate in CDCl ₃	S12
¹³ C NMR spectrum of <i>tert</i> -butyl <i>N</i> -(N-(2-Methoxyphenyl)piperazine)carbamate in CDCl ₃	S12
¹ H NMR spectrum of <i>tert</i> -butyl <i>N</i> -(N-(4-thiophene-phenyl)piperazine)carbamate in CDCl ₃	S13
¹³ C NMR spectrum of <i>tert</i> -butyl <i>N</i> -(N-(4-thiophene-phenyl)piperazine)carbamate in CDCl ₃	S13
¹ H NMR spectrum of <i>tert</i> -butyl <i>N</i> -(cyclohexyl)carbamate in CDCl ₃	S14
¹ H NMR spectrum of <i>tert</i> -butyl <i>N</i> -(2-[2-(2-aminoethoxy)ethoxy]ethanamine)carbamate	S14

¹³ C NMR spectrum of <i>tert</i> -butyl <i>N</i> -(2-[2-(2-aminoethoxy)ethoxy]ethanamine)carbamate	S15
¹ H NMR spectrum of 2-isopropylaniline in CDCl ₃	S16
¹³ C NMR spectrum of 2-isopropylaniline in CDCl ₃	S16
¹ H NMR spectrum of Naphthylamine in CDCl ₃	. S17
¹³ C NMR spectrum of Naphthylamine in MeOD	. S17
¹ H NMR spectrum of 3-chloroaniline in CDCl ₃	. S18
¹³ C NMR spectrum of 3-chloroaniline in CDCl ₃	. S18
¹ H NMR spectrum of 3-chloro-4-flouroaniline in CDCl ₃	. S19
¹³ C NMR spectrum of 3-chloro-4-flouroaniline in CDCl ₃	. S19
¹ H NMR spectrum of 2,4,6-trimethylaniline in CDCl ₃	. S20
¹³ C NMR spectrum of 2,4,6-trimethylaniline in MeOD	. S20
¹ H NMR spectrum of 2,6-diisopropylaniline in CDCl ₃	. S21
¹³ C NMR spectrum of 2,6-diisopropylaniline in CDCl ₃	. S21
¹ H NMR spectrum of 4-Nitroaniline in CDCl ₃	S22
¹ H NMR spectrum of 3-bromo-4-fluoroaniline in CDCl ₃	S22
¹³ C NMR spectrum of 3-bromo-4-fluoroaniline in CDCl ₃	S23
¹ H NMR spectrum of 4-iodoaniline in CDCl ₃	S23
¹ H NMR spectrum of N-(2-Methoxyphenyl)piperazine in CDCl ₃	S24
¹³ C NMR spectrum of N-(2-Methoxyphenyl)piperazine in CDCl ₃	S24
¹ H NMR spectrum of N-(4-thiophene-phenyl)piperazine in CDCl ₃	S25
¹³ C NMR spectrum of N-(4-thiophene-phenyl)piperazine in CDCl ₃	S25
¹ H NMR spectrum of cyclohexylamine in CDCl ₃	S26
¹ H NMR spectrum of 2-[2-(2-aminoethoxy)ethoxy]ethanamine in CDCl ₃	S26
EC1 Deprotection Utilizing Oxalyl Chloride	S24
Determination of HCl effectiveness in Deprotection	S31
X-Ray Crystal Compound 4 (EC1)	S33
Real time GC-MS spectra of oxalyl chloride deprotection	S34

Figure S1: ¹H NMR spectrum of *tert*-butyl N-(2-isopropylphenyl)carbamate (Entry 1a) in CDCl₃

Figure S2: ¹³C NMR spectrum of tert-butyl N-(2-isopropylphenyl)carbamate (Entry 1a) in CDCl₃

Figure S3: ¹H NMR spectrum of tert-butyl N-(1-naphthyl)carbamate (Entry 2a) in CDCl₃

Figure S4: ¹³C NMR spectrum of *tert*-butyl *N*-(1-naphthyl)carbamate (Entry 2a) in CDCl₃

Figure S5: ¹H NMR spectrum of *tert*-butyl *N*-(3-chlorophenyl)carbamate (Entry 3a) in CDCl₃

Figure S6: ¹³C NMR spectrum of *tert*-butyl *N*-(3-chlorophenyl)carbamate (Entry 3a) in CDCl₃

Figure S7: ¹H NMR spectrum of *tert*-butyl *N*-(3-chloro-4-fluorophenyl)carbamate (Entry 4a) in CDCl₃

Figure S8: ¹H NMR spectrum of tert-butyl N-(2,4,6-trimethylphenyl)carbamate (Entry 5a) in CDCl₃

Figure S9: ¹³C NMR spectrum of tert-butyl N-(2,4,6-trimethylphenyl)carbamate (Entry 5a) in CDCl₃

Figure S10: ¹H NMR spectrum of *tert*-butyl *N*-(2,6-diisopropylphenyl)carbamate (Entry 6a) in CDCl₃

Figure S11: ¹³C NMR spectrum of *tert*-butyl *N*-(2,6-diisopropylphenyl)carbamate (Entry 6a) in CDCl₃

Figure S12: ¹H NMR spectrum of *tert*-butyl *N*-(4-nitrophenyl)carbamate (Entry 7a) in CDCl₃

Figure S13: ¹³C NMR spectrum of *tert*-butyl *N*-(4-nitrophenyl)carbamate (Entry 7a) in CDCl₃

Figure S14: ¹H NMR spectrum of *tert*-butyl *N*-(3-bromo-4-fluorophenyl)carbamate (Entry 8a) in CDCl₃

Figure S15: ¹³C NMR spectrum of *tert*-butyl *N*-(3-bromo-4-fluorophenyl)carbamate (Entry 8a) in CDCl₃

Figure S16: ¹H NMR spectrum of tert-Butyl N-(4-iodophenyl)carbamate (Entry 9a) in CDCl₃

Figure S17: ¹³C NMR spectrum of tert-Butyl N- (4-iodophenyl)carbamate (Entry 9a) in CDCl₃

Figure S18: ¹H NMR spectrum of *tert*-butyl *N*-(N-(2-Methoxyphenyl)piperazine)carbamate(Entry 10a) in CDCl₃

Figure S19: ¹³C NMR spectrum of *tert*-butyl *N*-(N-(2-Methoxyphenyl)piperazine)carbamate (Entry 10a) in $CDCl_3$

Figure S20: ¹H NMR spectrum of *tert*-butyl *N*-(N-(4-thiophene-phenyl)piperazine)carbamate (Entry 11a) in CDCl₃

Figure S21: ¹³C NMR spectrum of *tert*-butyl *N*-(N-(4-thiophene-phenyl)piperazine)carbamate (Entry 11a) in CDCl₃

Figure S22: ¹H NMR spectrum of tert-butyl N-(cyclohexyl)carbamate (Entry 12a) in CDCl₃

Figure S23: ¹H NMR spectrum of *tert*-butyl *N*-(2-[2-(2-aminoethoxy)ethoxy]ethanamine)carbamate (Entry 13a) in CDCl₃

Figure S24: ¹³C NMR spectrum of *tert*-butyl *N*-(2-[2-(2-aminoethoxy)ethoxy]ethanamine)carbamate (Entry 13a) in CDCl₃

Figure S25: ¹H NMR spectrum of 2-isopropylaniline (Entry 1b) in CDCl₃

Figure S26: ¹³C NMR spectrum of 2-isopropylaniline (Entry 1b) in CDCl₃

Figure S27: ¹H NMR spectrum of Naphthylamine (Entry 2b) in MeOD

Figure S28: ¹³C NMR spectrum of Naphthylamine (Entry 2b) in MeOD

Figure S29: ¹H NMR spectrum of 3-chloroaniline (Entry 3b) in CDCl₃

Figure S30: ¹³C NMR spectrum of 3-chloroaniline (Entry 3b) in CDCl₃

Figure S31: ¹H NMR spectrum of 3-chloro-4-flouroaniline (Entry 4b) in CDCl₃

Figure S32: ¹³C NMR spectrum of 3-chloro-4-flouroaniline (Entry 4b) in CDCl₃

Figure S33: ¹H NMR spectrum of 2,4,6-trimethylaniline (Entry 5b) in CDCl₃

Figure S34: ¹³C NMR spectrum of 2,4,6-trimethylaniline (Entry 5b) in CDCl₃

Figure S35: ¹H NMR spectrum of 2,6-diisopropylaniline (Entry 6b) in CDCl₃

Figure S36: ¹³C NMR spectrum of 2,6-diisopropylaniline (Entry 6b) in CDCl₃

Figure S37: ¹H NMR spectrum of 4-Nitroaniline in CDCl₃ (Entry 7b)

Figure S38: ¹H NMR spectrum of 3-bromo-4-fluoroaniline (Entry 8b) in CDCl₃

Figure S40: ¹H NMR spectrum of 4-iodoaniline (Entry 9b) in CDCl₃

Figure S41: ¹H NMR spectrum of N-(2-Methoxyphenyl)piperazine (Entry 10b) in CDCl₃

Figure S42: ¹³C NMR spectrum of N-(2-Methoxyphenyl)piperazine (Entry 10b) in CDCl₃

Figure S43: ¹H NMR spectrum of N-(4-thiophene-phenyl)piperazine (Entry 11b) in CDCl₃

Figure S44: ¹³C NMR spectrum of N-(4-thiophene-phenyl)piperazine (Entry 11b) in CDCl₃

Figure S45: ¹H NMR spectrum of cyclohexylamine (Entry 12b) in CDCl₃

Figure S46: ¹H NMR spectrum of 2-[2-(2-aminoethoxy)ethoxy]ethanamine (Entry 13b) in CDCl₃

EC1 Deprotection Utilizing Oxalyl Chloride

Figure S47: ¹H NMR spectrum of compound 4

Figure S48: ¹³C NMR spectrum of compound 4

Figure S48: Reaction Monitoring via NMR (Before OxCl)

Figure S49: Reaction Monitoring via NMR (T = 0)

Figure S50: Reaction Monitoring via NMR (T = 2h)

Figure S51: Reaction Monitoring via NMR (T = 4h)

Figure S52: Reaction Monitoring via NMR (T = Overnight)

Figure S53: Determination of HCl effectiveness in Deprotection

	D/(1
	ECI
Empirical Formula	$C_{28}H_{28}N_2O_6$
	20 20 2 0
	450.54
Molecular Weight (g/mol)	458.54
Temperature (K)	90.0(2)
X-ray Radiation (Å)	CuKa (1.54178 Å)
Crystal System, Snace Groun	Monoclinic, C2
erjour Sjoern, space Group	
	a = 23.791(2) Å alpha = 90
Unit Cell Dimensions (Å, °)	b = 6.7169 (6) Å beta =103.374(4)
	c = 17.0032(16) A gamma = 90
Volume	2643.5(4) Å ³
7	2
L	2
Absorption Coefficient	1.663 mm ⁻¹
F(000)	1116.0
Crystal Size (mm)	0.300 x 0.030 x 0.020
• • • • • • • • • • • • • • • • • • • •	
Thete Damas	2 671 to 74 520
i neta kange	2.0/1 10 /4.320

X-ray Structural Data and Crystal Refinement

Completeness to Theta = 67.679

97.6 %

F²

1.033

Final R indices [I>2sigma(I)]

R1 = 0.0380, wR2 = 0.0975

Figure S54: X-ray crystal structure of Compound **4** (EC1). X-ray structure crystalized with 2 molecules of dichloromethane per unit cell

Real time GC-MS spectra of oxalyl chloride deprotection

Figure S55: (a) GCMS of (N-BOC) Naphtalamine with rt = 11.041. (b) GCMS of Naphtalamine with rt = 8.69

Figure S56: GCMS of (N-BOC) Naphtalamine deprotection reaction at time = 1 h. Boc protected starting material rt = 11.04. Intermediate rt = 8.455

Figure S57: GCMS of (N-BOC) Naphtalamine deprotection reaction at time = 2 h. Boc protected starting material rt = 11.04. Intermediate rt = 8.455

Figure S58: GCMS of (N-BOC) Naphtalamine deprotection reaction at time = 3 h. Boc protected starting material rt = 11.04. Intermediate rt = 8.455

0

C

NH

 NH_2

Figure S59: GCMS of (N-BOC) Naphtalamine deprotection reaction at time = 4 h. Boc protected starting material rt = 11.04. Intermediate rt = 8.455.

Figure S60: GCMS of (N-BOC) Naphtalamine deprotection reaction at time = 5 h. Boc protected starting material rt = 11.04. Intermediate rt = 8.455

Figure S61: GCMS of (N-BOC) Naphtalamine deprotection reaction at time = 6 h. Boc protected starting material rt = 11.04. Intermediate rt = 8.455

Figure S62: GCMS of (N-BOC) Naphtalamine deprotection reaction at time = 2 h. Boc protected starting material rt = 11.04. Intermediate rt = 8.455

Figure S63: GCMS of (BOC) Naphtalamine deprotection reaction at time = 3 h. Boc protected starting material rt = 11.04. Intermediate rt = 8.455

Figure S64: GCMS of (BOC) Naphtalamine deprotection reaction at time = 4 h. Boc protected starting material rt = 11.04. Intermediate rt = 8.455

Figure S65: GCMS of (BOC) Naphtalamine deprotection reaction at time = 5 h. Boc protected starting material rt = 11.04. Intermediate rt = 8.455. Tert-butyl and t-butyl oxide ions rt = 4.3. Dichloro-intermediate located at rt= 11.991