Supporting Information

Hydroxyl Porous Aromatic Frameworks for Efficient Adsorption of Organic Micropollutants in Water

Chen Mo, ‡^a Muhammad Faheem, ‡^a Saba Aziz,^a Song Jian,^a Wang Xue, ^a Tian Yuyang,^{*a} Ding Shuang,^{*b} and Zhu Guangshan ^a

a Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China. E-mail: tianyy100@nenu.edu.cn

b Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, P. R. China. E-mail: dingshuang2018@163.com

Table of Contents

Section	Section Detail						
S 1	FT-IR spectra of synthesized PAF materials	3					
S 2	Thermal stability test (TGA)	4					
S 3	SEM images of PAF materials	5					
S 4	PXRD analysis of PAF materials	5					
S 5	UV-visible reflectance spectra of PAF-80, PAF-81, and PAF-82	5					
S 6	UV-visible absorbance spectra of the aqueous solution of tested pollutants with PAF materials	6					
S 7	Pseudo-second-order kinetic data for pollutant adsorption by PAF materials.						
Table S1	Fitting parameters of pseudo-second-order kinetics	8					
S 8	Langmuir adsorption isotherms	8					
S 9	Langmuir linear plots	9					
S 10	Molecule sizes of BPA, 2-NO, and PCMX	9					
S 11	TGA of PAF-82 before and after adsorption	10					
	References	10					

Fig. S1 (a-c) FT-IR spectra of PAF-80 (a), PAF-81 (b) and PAF-82 (c).¹⁻²

Fig. S2 (a-c) TGA curves of PAF-80 (a), PAF-81 (b) and PAF-82 (c) under air at 10° C/minute.

Fig. S3 (a-c) SEM images of PAF-80 (a), PAF-81 (b) and PAF-82 (c).

Fig. S4 Powder X-ray diffraction (PXRD) pattern of PAF-81 (black), PAF-81 (red) and PAF-80 (blue).

Fig. S5 UV-visible reflectance spectra of PAF-80 (black), PAF-81 (red) and PAF-81 (blue).

Fig. S6 (a-c) UV–visible absorbance spectra of the aqueous solution of BPA during adsorption of PAF-80, PAF-81 and PAF-82, (d-f) UV–visible absorbance spectra of the aqueous solution of 2-NO during adsorption of PAF-80, PAF-81 and PAF-82, (g-i) UV–visible absorbance spectra of the aqueous solution of PCMX during adsorption of PAF-80, PAF-81, and PAF-82.

Fig. S7 (a-c) Pseudo-second-order kinetic data for BPA adsorption by PAF-80, PAF-81, and PAF-82. (d-f) Pseudo-second-order kinetic data for 2-NO adsorption by PAF-80, PAF-81, and PAF-82. (g-i) Pseudo-second-order kinetic data for PCMX adsorption by PAF-80, PAF-81, and PAF-82.

Table S1. Fitting parameters of pseudo-second-order kinetics and pollutant uptake

 rates by PAF materials.

	BPA			2-NO			РСМХ		
sorbent	K _{obs}	R ²	t _{eq}	K _{obs}	R ²	t _{eq}	K _{obs}	R ²	t _{eq}
	(g mg ⁻¹		(min)	(g mg ⁻¹		(min)	(g mg ⁻¹		(min)
	\min^{-1})			\min^{-1})			\min^{-1})		
PAF-80	0.0069	0.999	>45	0.0035	0.98	>60	0.0113	0.99	>45
PAF-81	0.0099	0.98	>60	0.0097	0.98	>60	0.0036	0.97	>60
PAF-82	0.3203	0.998	15	0.1192	0.99	30	0.1949	0.999	10

Fig. S8 (a-c) Langmuir adsorption isotherms of BPA onto PAF-80, PAF-81, and PAF-82. (d-f) Langmuir adsorption isotherms of 2-NO onto PAF-80, PAF-81, and PAF-82. (g-i) Langmuir adsorption isotherms of PCMX onto PAF-80, PAF-81, and PAF-82.

Fig. S9 Langmuir linear plots of BPA onto PAF-80, PAF-81, and PAF-82. (d-f) Langmuir linear plots of 2-NO onto PAF-80, PAF-81, and PAF-82. (g-i) Langmuir linear plots of PCMX onto PAF-80, PAF-81, and PAF-82.

Fig. S10 Molecule sizes of (a) Bisphenol A, (b) 2-Naphthol, and (c) p-Chloroxylenol.

Fig. S11 TGA of PAF-82 before adsorption (red curves) and after adsorption (purple curves) to different micropollutants of (a) BPA, (b) 2-NO and (c) PCMX.

References

1. Tan, D.; Fan, W.; Xiong, W.; Sun, H.; Cheng, Y.; Liu, X.; Meng, C.; Li, A.; Deng, W.-Q., Study on the Morphologies of Covalent Organic Microporous Polymers: the Role of Reaction Solvents. *Macromolecular Chemistry and Physics* **2012**, *213* (14), 1435-1440.

2. Shen, X.; Faheem, M.; Matsuo, Y.; Aziz, S.; Zhang, X.; Li, Y.; Song, J.; Tian, Y.; Zhu, G., Polarity engineering of porous aromatic frameworks for specific water contaminant capture. *Journal of Materials Chemistry A* **2019**, *7* (6), 2507-2512.