Phosphorus pentoxide as a cost-effective, metal-free catalyst for ring opening polymerization of ε-caprolactone

Ismail Adoumaz,^{a,b} El Hassan Boutriouia,^a Redouane Beniazza,^c Hicham Qayouh,^a Abdelkrim El Kadib,^d Abdel Khoukh,^b Maud Save,^b and Mohammed Lahcini.^{a,c*}

^a IMED-Lab, Cadi Ayyad University, Marrakesh 40000, Morocco, Faculté des Sciences et Techniques Gueliz, Université Cadi Ayyad, Av. Abdelkrim Khattabi BP 549, 40000 Marrakech, Morocco

^b CNRS, University Pau & Pays Adour, E2S UPPA, Institut des Sciences Analytiques et de

Physico-Chimie pour l'Environnement et les Matériaux, IPREM, UMR5254, 64000, Pau,

France

^c Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, 43150, Ben Guerir, Morocco

^d Euro-Med Research Institute, Engineering Division, Euro-Mediterranean University of Fes (UEMF), Fez-Shore, Route de SidiHrazem, 30070, Fez, Morocco

Supporting Information available

1.NMR analysis	2
2.SEC Analysis	3
3. Thermal properties	4

1.NMR analysis

a- Conversion calculations

The 1H NMR analysis of the crude samples in CDCl₃ allows to evaluate the conversion by comparing the signals of protons –CH2 ϵ ' of ϵ -CL and those ϵ of PCL; according to the formula

Conv (%) =
$$[A\epsilon / A (\epsilon + \epsilon')] * 100.$$

In a second step, the products purified by precipitation in cold methanol and dried at room temperature in the vacuum oven were analyzed by 1 H NMR in CDCl₃ and analysed by SEC in THF to obtain their mass distribution.

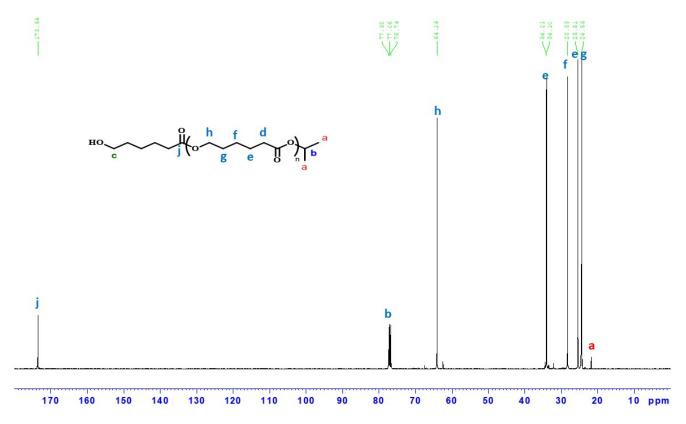
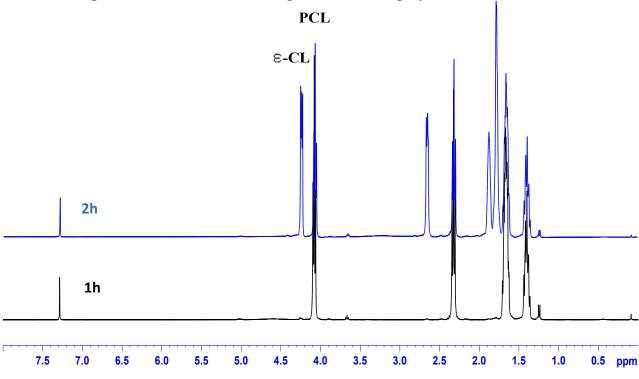



Figure 1. ¹³C NMR spectra of the obtained PCL in CDCl₃ solvent

c- 1H NMR spectras of chain extension experiment of CL polymerization

Figure 2: 1H NMR spectrums of PCL in CDCl₃ after 100% conversion of $[\epsilon$ -CL]₀/[P₂O₅]₀/[iPrOH]₀ = 50/1/1 (black line) and after 50% conversion of 100 equivalents of ϵ -CL compared to isopropanol and P₂O₅ (blue line)

2. SEC Analysis of chain extension experiment of CL polymerization

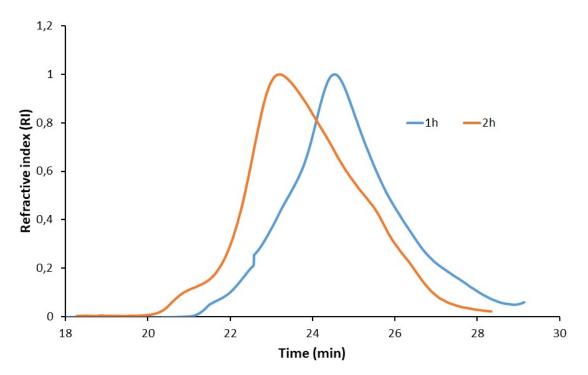


Figure 3: SEC curves of PCL made with $P_2O_5/iPrOH$, orange line final product ($Mn = 11800 \text{ g mol}^{-1}$) and blue line prepolymer ($Mn = 7505 \text{ g.mol}^{-1}$)

3. Thermal properties a- Differential Scanning Calorimetry (DSC) Analysis:

The tests were carried out using a Perkin Elmer Jade DSC under a stream of Gas Nitrogen purge flow: 20.0 ml/min, with a temperature ramp of 10 °C/min. The samples used have a mass of between 7 -10 mg analysed in a temperature range of -60°C to 100 °C.

b- Thermogravimetric analysis (TGA):

The TGA was performed to determine the thermal stability of polymer materials. TGA was performed by using the TA Instruments Q500 analyser at heating rate of 10 °C min⁻¹ under nitrogen atmosphere (80 cm³ min⁻¹).

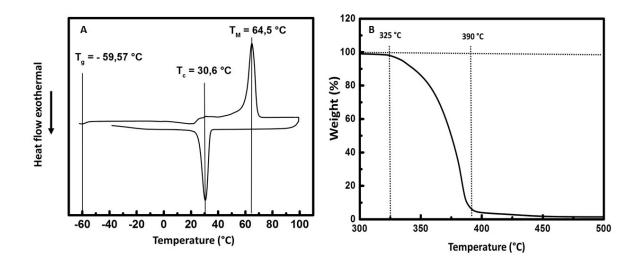


Figure 4: A: DSC curve of PCL prepared by ROP of ϵ -CL (at 100 °C in bulk, [CL]₀/[P₂O₅]/[iPrOH]=200:1:1) with the conv. of 98% and (b) TGA thermograms of PCL