# Characterization of structure-function relationship of a novel salt-resistant antimicrobial peptide, RR12 

Ping-Sheng Wu ${ }^{\text {a }}$, Shu-Jung Lai ${ }^{\text {b }}$, Kit-Man Fung ${ }^{\text {b }}$ and Tien-Sheng Tseng ${ }^{*}$ c

${ }^{\text {a }}$ Division of Infectious Diseases, Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, 231, Taiwan.<br>${ }^{\mathrm{b}}$ Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.<br>${ }^{\text {}}$ Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan.

*Corresponding authors: Tien-Sheng Tseng

## Supporting information Molecular modeling of RR12 in complex with SDS micelle based on the PRE results

The determined solution of RR12 was used as the starting conformation for the molecular modeling. The SDS micelle with 60 molecules was built, minimized and equilibrated by the Micelle Maker web server (http://micelle.icm.uu.se/main.php). The GROMACS topology file for SDS coordinates (SDS.itp) was obtained from web site of Bioinformatics Group of the International ScientificEducational Center (http://bioinformatics.am/downloads/). Based on the results of our PRE studies, the structure of RR12 was initially docked into the SDS micelle with the residues (R1-L8) buried and C-terminal residues (R9-R12) outside the micelle. Subsequently, the built peptide-micelle complex was subjected to a brief molecular dynamic simulation performed by GROMACS v4.6.7 ${ }^{1,2}$. The peptide-micelle coordinates were converted to GROMACS format and placed in a $100 \AA^{3}$ periodic box of spc216 waters and then neutralized with sodium and chloride counter ions. The RR12 peptide was further position constrained and underwent the conjugated gradient minimization to remove any interfering contacts. After that, the simulation was carried out at 313 K with the modified force filed for lipids (http://www.gromacs.org/topologies/uploaded_force_fields/ffgmx_lipids.tar.gz). The remaining parameters were set as previous studies ${ }^{3}$ with a shorten simulation time of 2 ns to obtain the model of peptide-micelle complex in which the orientation of RR12 corroborates with the observations of PRE experiments.

## Figures



Fig. S1. (A) An 800 MHz TOCSY spectrum recorded at 60 ms . (B) The finger-print region of the NOESY spectrum (mixing time, 150 ms ). In (A) and (B), peaks are labelled at the positions of the $\mathrm{NH}-\mathrm{C}_{\alpha} \mathrm{H}$ cross-peaks.


Fig. S2. 1D NMR spectra of RR12 recorded in DPC and SDS micelles.


Fig. S3. The overlapped 2D-TOCSY spectra of RR12 recorded in DPC and SDS micelles.


Fig. S4. The overlapped 2D-NOESY spectra of RR12 recorded in DPC and SDS micelles.


Fig. S5. Helical wheels projections of the AMPs compared with RR12. The helical wheels of the presented AMPs were draw by using NetWheels (http://lbqp.unb.br/NetWheels/).


Fig. S6. PRE-NMR spectra of RR12 in SDS micelle alone and with 5-DSA. PRE induced by 5DSA. Amide region of a TOCSY spectrum in the absence (black) and presence (red) of 5-DSA.


Fig. S7. PRE-NMR spectra of RR12 in SDS micelle alone and with 12-DSA. PRE induced by 12DSA. Amide region of a TOCSY spectrum in the absence (black) and presence (blue) of 12-DSA.


Fig. S8. PRE-NMR spectra of RR12 in SDS micelle alone and with $\mathbf{M n}^{\mathbf{2 +}}$ ions. PRE induced by $\mathrm{Mn}^{2+}$ ions. Amide region of a TOCSY spectrum in the absence (black) and presence (green) of 0.5 mM $\mathrm{Mn}^{2+}$ ions.

Tables
Table1. The NMR chemical shift table of RR12.

| Group | Atom | Nuclear | Shift | SDev | Group | Atom | Nuclear | Shift | SDev |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R1 | HA | ${ }^{1} \mathrm{H}$ | 4.16 | 0.003 | 17 | HB | ${ }^{1} \mathrm{H}$ | 2.015 | 0.005 |
| R1 | HB | ${ }^{1} \mathrm{H}$ | 2.222 | 0 | 17 | HG2 | ${ }^{1} \mathrm{H}$ | 0.896 | 0.007 |
| R1 | HB2 | ${ }^{1} \mathrm{H}$ | 2.22 | 0.003 | I7 | HN | ${ }^{1} \mathrm{H}$ | 8.003 | 0.003 |
| R1 | HB3 | ${ }^{1} \mathrm{H}$ | 2.016 | 0.002 | 17 | HN | ${ }^{15} \mathrm{~N}$ | 118.42 | 0.01 |
| R1 | HD\# | ${ }^{1} \mathrm{H}$ | 3.244 | 0 | L8 | HA | ${ }^{1} \mathrm{H}$ | 3.985 | 0.006 |
| R1 | HD2 | ${ }^{1} \mathrm{H}$ | 3.287 | 0.003 | L8 | HB\# | ${ }^{1} \mathrm{H}$ | 1.876 | 0.008 |
| R1 | HD3 | ${ }^{1} \mathrm{H}$ | 3.245 | 0 | L8 | HG | ${ }^{1} \mathrm{H}$ | 1.54 | 0.003 |
| R1 | HE | ${ }^{1} \mathrm{H}$ | 7.236 | 0.001 | L8 | HN | ${ }^{1} \mathrm{H}$ | 8.153 | 0.004 |
| R1 | HG\# | ${ }^{1} \mathrm{H}$ | 1.821 | 0.003 | L8 | HN | ${ }^{15} \mathrm{~N}$ | 118.3 | 0.002 |
| R2 | HA | ${ }^{1} \mathrm{H}$ | 4.389 | 0.003 | R9 | HA | ${ }^{1} \mathrm{H}$ | 4.035 | 0.005 |
| R2 | HB\# | ${ }^{1} \mathrm{H}$ | 1.932 | 0.006 | R9 | HB\# | ${ }^{1} \mathrm{H}$ | 2.047 | 0.004 |
| R2 | HD\# | ${ }^{1} \mathrm{H}$ | 3.248 | 0 | R9 | HD2 | ${ }^{1} \mathrm{H}$ | 3.236 | 0.006 |
| R2 | HE | ${ }^{1} \mathrm{H}$ | 7.079 | 0.001 | R9 | HD3 | ${ }^{1} \mathrm{H}$ | 3.169 | 0.002 |
| R2 | HN | ${ }^{1} \mathrm{H}$ | 8.549 | 0.001 | R9 | HE | ${ }^{1} \mathrm{H}$ | 7.148 | 0.001 |
| R2 | NH $\varepsilon$ | ${ }^{15} \mathrm{~N}$ | 124.05 | 0.01 | R9 | HG2 | ${ }^{1} \mathrm{H}$ | 1.796 | 0.007 |
| L3 | HA | ${ }^{1} \mathrm{H}$ | 4.103 | 0.007 | R9 | HG3 | ${ }^{1} \mathrm{H}$ | 1.699 | 0.01 |
| L3 | HB2 | ${ }^{1} \mathrm{H}$ | 1.825 | 0 | R9 | HN | ${ }^{1} \mathrm{H}$ | 7.852 | 0.003 |
| L3 | HB3 | ${ }^{1} \mathrm{H}$ | 1.751 | 0 | R9 | HN | ${ }^{15} \mathrm{~N}$ | 118.68 | 0.02 |
| L3 | HG | ${ }^{1} \mathrm{H}$ | 1.731 | 0 | R9 | NH $\varepsilon$ | ${ }^{15} \mathrm{~N}$ | 124.86 | 0.01 |
| L3 | HN | ${ }^{1} \mathrm{H}$ | 8.396 | 0.002 | L10 | HA | ${ }^{1} \mathrm{H}$ | 4.13 | 0.008 |
| L3 | HN | ${ }^{15} \mathrm{~N}$ | 120.99 | 0.02 | L10 | HB\# | ${ }^{1} \mathrm{H}$ | 1.932 | 0 |
| I4 | HA | ${ }^{1} \mathrm{H}$ | 3.779 | 0.003 | L10 | HG | ${ }^{1} \mathrm{H}$ | 1.611 | 0.003 |
| I4 | HG2 | ${ }^{1} \mathrm{H}$ | 0.934 | 0.01 | L10 | HN | ${ }^{1} \mathrm{H}$ | 7.995 | 0.003 |
| I4 | HN | ${ }^{1} \mathrm{H}$ | 7.862 | 0.004 | L10 | HN | ${ }^{15} \mathrm{~N}$ | 119.7 | 0 |
| I4 | HN | ${ }^{15} \mathrm{~N}$ | 117.07 | 0.01 | L11 | HA | ${ }^{1} \mathrm{H}$ | 4.143 | 0.01 |
| R5 | HA | ${ }^{1} \mathrm{H}$ | 3.947 | 0.003 | L11 | HB\# | ${ }^{1} \mathrm{H}$ | 1.864 | 0.004 |
| R5 | HB\# | ${ }^{1} \mathrm{H}$ | 1.941 | 0.005 | L11 | HG | ${ }^{1} \mathrm{H}$ | 1.58 | 0.012 |
| R5 | HD\# | ${ }^{1} \mathrm{H}$ | 3.228 | 0.002 | L11 | HN | ${ }^{1} \mathrm{H}$ | 8.096 | 0.004 |
| R5 | HE | ${ }^{1} \mathrm{H}$ | 7.119 | 0 | L11 | HN | ${ }^{15} \mathrm{~N}$ | 117.63 | 0.01 |
| R5 | HG\# | ${ }^{1} \mathrm{H}$ | 1.663 | 0 | R12 | HA | ${ }^{1} \mathrm{H}$ | 4.25 | 0.004 |
| R5 | HG2 | ${ }^{1} \mathrm{H}$ | 1.802 | 0.005 | R12 | HB2 | ${ }^{1} \mathrm{H}$ | 2.002 | 0.008 |
| R5 | HG3 | ${ }^{1} \mathrm{H}$ | 1.672 | 0.005 | R12 | HB3 | ${ }^{1} \mathrm{H}$ | 1.843 | 0.006 |
| R5 | HN | ${ }^{1} \mathrm{H}$ | 7.483 | 0.002 | R12 | HD\# | ${ }^{1} \mathrm{H}$ | 3.173 | 0.003 |
| R5 | HN | ${ }^{15} \mathrm{~N}$ | 118.46 | 0.01 | R12 | HE | ${ }^{1} \mathrm{H}$ | 7.091 | 0.001 |
| R5 | $\mathrm{NH} \varepsilon$ | ${ }^{15} \mathrm{~N}$ | 124.43 | 0.02 | R12 | HG\# | ${ }^{1} \mathrm{H}$ | 1.702 | 0.003 |


| L6 | HA | ${ }^{1} \mathrm{H}$ | 4.1 | 0.005 | $\mathbf{R 1 2}$ | $\mathrm{HH1} \mathrm{\#}$ | ${ }^{1} \mathrm{H}$ | 7.134 | 0.001 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L6 | $\mathrm{HB} \#$ | ${ }^{1} \mathrm{H}$ | 1.843 | 0 | $\mathbf{R 1 2}$ | $\mathrm{HH} \# \#$ | ${ }^{1} \mathrm{H}$ | 7.019 | 0.001 |
| L6 | HN | ${ }^{1} \mathrm{H}$ | 7.697 | 0.034 | $\mathbf{R 1 2}$ | HN | ${ }^{1} \mathrm{H}$ | 7.896 | 0.002 |
| L6 | HN | ${ }^{15} \mathrm{~N}$ | 120.34 | 0.02 | $\mathbf{R 1 2}$ | HN | ${ }^{15} \mathrm{~N}$ | 117.51 | 0.01 |
| $\mathbf{I 7}$ | HA | ${ }^{1} \mathrm{H}$ | 3.584 | 0.006 | $\mathbf{R 1 2}$ | $\mathrm{NH} \varepsilon$ | ${ }^{15} \mathrm{~N}$ | 124.64 | 0.02 |

## References

1. D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. Berendsen, J Comput Chem, 2005, 26, 1701-1718.
2. B. Hess, C. Kutzner, D. van der Spoel and E. Lindahl, J Chem Theory Comput, 2008, 4, 435447.
3. T. S. Tseng, S. H. Wang, T. W. Chang, H. M. Wei, Y. J. Wang, K. C. Tsai, Y. D. Liao and C. Chen, PLoS One, 2016, 11, e0164597.
