Hydrothermal control, characterization, growth mechanism, and photoluminescence properties of highly crystalline 1D Eu(OH)₃ nanostructures

Xiang Ji^{1, #}, Pingjing Hu^{1, #}, Xiangzi Li^{1, 2,*}, Longwei zhang^{1, #}, Jian Sun²

¹Anhui Province Key Laboratory of Active Biological Macro-molecules Research, Institute of Synthesis and Application of Medical Materials, Department of Chemistry, Wannan Medical College, Wuhu 241002, China.

²College of Chemistry and Materials Science, Anhui Laboratory of Molecule-based Materials, Anhui Normal University, Wuhu 241002, China

E-mail: li-xiang-zi@163.com

Fig.S1 The overlapped emission spectra of six Eu(OH)₃ nanostructures

Fig.S2 The λ_{ex} -*I* curves of six Eu(OH)₃ nanostructures

Shape		1	2	3	4	5	6	7	8	9	x	Ē (nm)	D (nm)	L/D
SHP	L (nm)	280	255	262	266	296	299	278	266	280	15	276	-	
	D (nm)	252	234	212	245	268	266	257	219	265	21	_	246	_
	L/D	1.1	1.1	1.2	1.1	1.1	1.1	1.1	1.2	1.1	_	_	_	1.1
LHP	L (nm)	505	527	411	545	415	441	440	499	358	62	460	_	_
	D (nm)	242	239	191	257	214	225	204	220	182	25	_	219	_
	L/D	2.1	2.2	2.2	2.1	1.9	2.0	2.2	2.3	2.0	_	_	_	2.1
CR	L (nm)	258	265	255	246	258	256	235	280	267	13	258		_
	D (nm)	42	54.4	49.6	40.4	46	48.1	50	55	50.2	5	_	48	_
	L/D	6.0	4.9	5.1	6.1	5.6	5.3	4.7	5.1	5.3	_	_	_	5.3
SR	L (nm)	137	109	97	104	84	122	139	_	_	21	113	_	_
	D (nm)	29.1	27.5	27.5	28	29.3	31	30.2	_	_	1	_	29	_
	L/D	4.7	4.0	3.5	3.7	2.9	3.9	4.6	_	_	—	_	-	3.9
LR	L (nm)	278	285	402	141	209	313	290	_	_	82	274	_	_
	D (nm)	22.6	21	25.3	18	28	23.5	24.4	_	_	3	_	23	_
	L/D	12.3	13.6	15.9	7.8	7.5	13.3	11.9	_	_	_	_	_	11.8
NB	L (nm)	2114	1629	1597	1795	2390	1233	1277	_	_	422	1719	_	_
	D (nm)	264	220	176	121	187	143	165	_	_	48	_	182	_
	L/D	8.0	7.4	9.1	14.8	12.8	8.6	7.7	_	_	_	_	_	9.4

Table S1 The detailed measurements data of six $Eu(OH)_3$ nanostructures