Supporting Information

Heterodinuclear nickel(II)-iron(II) azadithiolates as structural and functional models for the active site of [NiFe]hydrogenases

Li-Cheng Song,*ab Bei-Bei Liu,a Wen-Bo Liu, and Zheng-Lei Tana

^aDepartment of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
^bCollaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China

Contents:

- 6. IR and ¹H (¹³C, ³¹P) NMR spectra of 4 (Fig. S8–S11)
- 7. IR and ¹H (¹³C, ³¹P) NMR spectra of 6 (Fig. S12–S15)

Fig. S1 Cyclic voltammograms of TFA (0–10 mM) without 7 or 9 in 0.1 M n-Bu₄NPF₆/MeCN at a scan rate of 0.1 Vs⁻¹.

TFA/mM	7		9		TFA without 7 or 9	
	$E_{\rm pc}/{ m V}$	$i_{\rm p}/\mu{ m A}$	$E_{\rm pc}/{ m V}$	$i_{\rm p}/\mu{ m A}$	$E_{\rm pc}/{ m V}$	$i_{\rm p}/\mu{ m A}$
2	-1.85	72.6	-1.53	64.1	-2.02	38.5
4	-1.89	120	-1.59	88.8	-1.97	70.4
10	-2.01	240	-1.79	220	-2.08	214

All potentials are versus Fc/Fc^+ in 0.1 M *n*-Bu₄NPF₆/MeCN at a scan rate of 0.1 Vs⁻¹.

3. Cyclic voltammograms of precursor 3 (1.0 mM) with TFA (0–10 mM) in 0.1 M n-Bu₄NPF₆/MeCN at a scan rate of 0.1 Vs⁻¹

Fig. S2 Cyclic voltammograms of precursor **3** (1.0 mM) with TFA (0–10 mM) in 0.1 M *n*-Bu₄NPF₆/MeCN at a scan rate of 0.1 Vs⁻¹.

Fig. S3 Cyclic voltammograms of precursor **4** (1.0 mM) with TFA (0–10 mM) in 0.1 M *n*-Bu₄NPF₆/MeCN at a scan rate of 0.1 Vs⁻¹.

5. IR and ¹H (¹³C, ³¹P) NMR spectra of 2

Fig. S7 ³¹P NMR spectrum of 2 in CDCl₃

6. IR and ¹H (¹³C, ³¹P) NMR spectra of 4

Fig. S11 ³¹P NMR spectrum of 4 in CDCl₃

7. IR and ¹H (¹³C, ³¹P) NMR spectra of 6

Fig. S12 IR spectrum of 6

Fig. S13 ¹H NMR spectrum of 6 in acetone-d₆

Fig. S15 ³¹P NMR spectrum of 6 in CDCl₃

8. IR and ¹H (¹³C, ³¹P) NMR spectra of 7

Fig. S18¹³C NMR spectrum of 7 in CD₃CN

Fig. S19 ³¹P NMR spectrum of 7 in CDCl₃

100 ١ м 98 96 Transmittance [%] 0 92 94 9 NCO₂CH₂Ph⁺BF₄ co RPh₂ 6 88 86 3512.67 3446.06 3395.39 1092.08 3055.93 2922.99 1703.78 571.74 524.25 482.92 1940.14 817.65 741.80 699.31 407.0 366.3 300.1 262.7 262.7 3500 3000 2500 2000 1500 1000 500

9. IR and ¹H (¹³C, ³¹P) NMR spectra of 8

Fig. S20 IR spectrum of 8

Wavenumber cm-1

Fig. S21 ¹H NMR spectrum of 8 in CDCl₃

Fig. S23 ³¹P NMR spectrum of 8 in CDCl₃