Large interlayer spacing $Nb_4C_3T_x$ (MXene) promotes the ultrasensitive electrochemical detection of Pb^{2+} on glassy carbon electrode

P Abdul Rasheed^a, Ravi P Pandey^a, Tricia Gomez^a, Michael Naguib^b, Khaled A Mahmoud^{a*}

^aQatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University

(HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar

^bDepartment of Physics and engineering physics, Tulane University, New Orleans, LA, USA

* To whom all correspondence should be addressed:

E-mail: kmahmoud@hbku.edu.qa, Fax: +974 445441528, Phone: +974 44541694

Supporting Information

1. Synthesis of Nb₂AlC and Nb₄AlC₃ MAX phases

Powders of niobium (Alfa Aesar, 99.98%, -325 mesh), aluminum (Alfa Aesar, 99.9%, -325 mesh), and graphite C(Alfa Aesar, 99%, 7-11 micron) were mixed in ratios of 2Nb:1.3Al:1C for Nb₂AlC and 4Nb:1.5Al:2.7C for Nb₄AlC₃ were mixed for 3h at 56 rpm in a Turbula T2F mixer with yttria-stabilized zirconia balls as mixing media. After mixing, the Nb₂AlC powder was furnaced for 4 h at 1600°C with a 10 °C heating rate in a tube furnace under flowing argon. For Nb₄AlC₃, powders were pressed into ~10 g pellets and furnaced at 1700 °C for 1 h with a 10°C heating rate in a tube furnace under flowing argon. After furnacing, the products were ground to -400 mesh before etching. ^{1,2}

Fig. S1. EDX data for (a) DL-Nb₂CT_x and (b) DL-Nb₄C₃T_x.

Fig. S2. XRD pattern of ML-Nb₂CT_x, DL-Nb₂CT_x, ML-Nb₄C₃T_x, and DL-Nb₄C₃T_x.

2. Calculation of the electrochemical active surface area using Randles-Sevcik equation

The Randles–Sevcik equation is $i_p = 2.69 \times 10^5 \text{ n}^{3/2} \text{ AD}^{1/2} \text{Cv}^{1/2}$

Where i_p = current maximum in amps, n = number of electrons transferred in the redox event (usually 1), A = electrode area in cm², D = diffusion coefficient in cm²/s, C = concentration in mol/cm³ and v = scan rate in V/s.

The $n^{3/2}$ of 10mM of K₃[Fe(CN)₆] is 1 and Diffusion coefficient, *D* is 7.6×10⁻⁶ cms⁻¹. The electrochemical surface area was calculated from the anodic peak current at the scan rate 100mVs⁻¹.

From the above equation, the electrochemical active surface area was calculated as 0.574×10^{-3} cm² and 0.621×10^{-3} cm² for Nb₂CT_x and Nb₄C₃T_x respectively.³

References

- 1. J. Yang, M. Naguib, M. Ghidiu, L.-M. Pan, J. Gu, J. Nanda, J. Halim, Y. Gogotsi and M. W. Barsoum, *Journal of the American Ceramic Society*, 2016, **99**, 660-666.
- 2. M. Naguib, J. Halim, J. Lu, K. M. Cook, L. Hultman, Y. Gogotsi and M. W. Barsoum, *Journal of the American Chemical Society*, 2013, **135**, 15966-15969.
- 3. P. V. Sarma, C. S. Tiwary, S. Radhakrishnan, P. M. Ajayan and M. M. Shaijumon, *Nanoscale*, 2018, **10**, 9516-9524.