Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

STM apparent height measurements of molecular wires with different physical length attached on 2-D phase separated templates for evaluation of single molecular conductance

Tomoya Iizuka, Daiki Shimizu and Kenji Matsuda*

Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

Contents:

I. Experimental Details

- A. Materials and Synthesis
- B. UV-vis absorption spectra
- C. STM measurements
- D. Theoretical calculations

II. Additional Data

III. NMR and MASS spectra

References

I. Experimental Details

A. Materials and Synthesis

General. Unless specifically mentioned, reagents and solvents were obtained from commercial suppliers and used without further purification. All reactions were monitored by thin-layer chromatography carried out on 0.2 mm Merck silica gel plates (60F-254). Column chromatography was performed on silica gel (Nacalai Tesque, 70– 230 mesh), on a Biotage Isolera One with a SNAP flash silica gel cartridge (KP-Sil), or on activated alumina (Nacalai Tesque, 200 mesh). Preparative gel permeation chromatography was carried out using JAIGEL1H and 2H columns (eluent: chloroform). ¹H and ¹³C NMR spectra were recorded on a JEOL ECS400, JEOL ECZ500R, or a JEOL ECA600P spectrometer. Tetramethylsilane (TMS) was used as an internal standard (δ = 0 ppm). Mass spectra were obtained on a JEOL JMS-MS700 or a Thermo Fisher Scientific EXACTIVE plus mass spectrometer. *N,N*dimethylformamide (DMF) was dried with calcium hydride and then distilled before use.

Scheme S1. Synthetic routes of target compounds 1 and 2.

Synthesis of 5-methyl-2,2'-bithiophene (3)

To a suspension of magnesium (turnings, 492.1 mg, 20.3 mmol) in dried THF (20 mL) was added dropwise 2-bromo-5-methylthiophene (1.7 mL, 15 mmol) under nitrogen atmosphere, and the resulting mixture was stirred until the mixture got room temperature. The suspension was added to a mixture of 2-bromothiophene (1.25 mL, 13.0 mmol) and [Pd(dppf)Cl₂]·CH₂Cl₂ (39.7 mg, 48.6 µmol) in dried THF (10 mL) under nitrogen atmosphere, and the mixture was stirred at 0 °C for 2 h. The reaction mixture was poured into MeOH (3 mL), and the mixture was extracted with CH₂Cl₂. Organic layer was dried over MgSO₄ and concentrated. Then, purification by twice silica gel column chromatography (eluent: DCM/hexane) afforded **3** as colorless oil (1.59 g, 8.82 mmol, 68%). **3**: ¹H NMR (400 MHz, CDCl₃, δ): 3.16 (s, 3H), 6.65 (m, 1H), 6.94–6.99 (m, 2H), 7.08 (dd, 1H, J_1 = 3.7 Hz, J_2

 $= 1.3 \text{ Hz}), 7.15 \text{ (dd, 1H, } J_1 = 5.1 \text{ Hz}, J_2 = 1.1 \text{ Hz}). \text{ EI-MS } (m/z): [M]^+ \text{ calcd for } [C_9H_8S_2]^+, 180.01; \text{ found: 180, } 181.$

Synthesis of 5-methyl-5'-(4-pyridyl)-2,2'-bithiophene (1)

To a solution of **3** (307.1 mg, 1.70 mmol) in dried THF (7.5 mL) was added dropwise *n*-BuLi (1.6 M in hexane, 1.2 mL, 1.9 mmol, 1.1 eq) at -78 °C under nitrogen atmosphere. The mixture was stirred for 1 h, and then tri-butylborate (0.55 mL, 2.0 mmol, 1.2 eq) was added dropwisely. The mixture was stirred for 1 h and then poured onto water. Then, to the mixture, 4-bromopyridine hydrochloride (363.1 mg, 1.87 mmol, 1.1 eq), Pd(PPh₃)₄ (94.7 mg, 0.082 mmol), K₂CO₃ (534 mg, 3.86 mmol) and H₂O (2 mL) was added, and the resulting suspension was heated at 65 °C for 1 day. The reaction mixture was extracted with CH₂Cl₂, and the organic portion was washed with brine and dried over anhydrous MgSO₄. Obtained crude product after concentration was purified by column chromatography (silica gel, CH₂Cl₂/ethyl acetate = 9/1) to give 1 as a pale yellow solid (313.7 mg, 1.22 mmol, 72%). 1: ¹H NMR (400 MHz, CDCl₃, δ): 2.50 (s, 3H), 6.70 (d, 1H, *J* = 3.1 Hz), 7.04 (d, 1H, *J* = 3.5 Hz), 7.10 (d, 1H, *J* = 3.8 Hz), 7.40 (d, 1H, *J* = 3.9 Hz), 7.44 (d, 2H, *J* = 4.6 Hz), 8.57 (d, 2H, *J* = 4.6 Hz); ¹³C NMR (101 MHz, CDCl₃, δ): 15.42, 119.35, 123.99, 124.33, 126.08, 126.19, 134.35, 138.72, 139.75, 140.24, 141.09, 150.35; EI-MS (*m*/*z*) [M]⁺ calcd for [C₁₄H₁₁NS₂]⁺, 257.03; found: 257.

Synthesis of 4-bromo-4'-methyl-1-1'-biphenyl (4)

A mixture of *p*-bromoiodobenzene (2.504 g, 8.85 mmol), 4-methylphenylboronic acid (1.205 g, 8.86 mmol), $Pd(PPh_3)_4$ (0.219 g, 0.39 mmol), and K_2CO_3 (3.18 g, 23.0 mmol) in THF/water (32 mL/8 mL) was heated at 65 °C overnight under nitrogen atmosphere. The reaction mixture was extracted with CH_2Cl_2 . After being dried over anhydrous MgSO₄, the residue obtained from combined organics, was purified by silica column chromatography (hexane) get to **4** as a white solid (0.654 g, 28%).

4: ¹H NMR: (400 MHz, CDCl₃, δ): 2.39 (s, 3H), 7.24 (2H), 7.44 (m, 4H), 7.54 (d, 2H, *J* = 8.6 Hz); EI-MS (*m/z*) [M]⁺ calcd for [C₁₃H₁₁Br]⁺: 246.00; found 246, 248.

Synthesis of 4-methyl-4'-(4-pyridyl)-1,1'-biphenyl (2)

To a solution of 4 (260 mg, 1.05 mmol) in dry THF (5 mL) was added dropwise *n*-BuLi (1.6 M in hexane, 0.75 mL, 1.2 mmol, 1.1 eq) at -78 °C under nitrogen atmosphere. The mixture was stirred for 1 h, and then tributylborate (0.35 mL, 1.31mmol, 1.2 eq) was added dropwise. The mixture was stirred for 1 h and then poured onto water. Then, to the mixture 4-bromopyridine, hydrochloride (198.4 mg, 1.02 mmol), Pd(PPh₃)₄ (52.2 mg, 0.045 mmol), and Na₂CO₃ (3 M in water, 3 mL, 3 mmol) was added, and resulting suspension was heated to reflux overnight. The reaction mixture was extracted with CH₂Cl₂, and the organic portion was washed with brine and dried over Na₂SO₄. Purification by silica column chromatography (CH₂Cl₂/ethyl acetate) gave 1 as a colorless solid (61.8 mg, 0.25 mmol, 25 %).

2: ¹H NMR (400 MHz, CDCl₃, δ): 2.40 (s, 3H), 7.27 (d, 2H, *J* = 7.9 Hz), 7.53 (m, 4H), 7.70 (s, 4H), 8.66 (d, 2H, *J* = 6.0 Hz); ¹³C NMR (101 MHz, CDCl₃, δ): 21.15, 121.43, 126.92, 127.34, 127.59, 129.64, 136.57, 137.29, 137,65, 141.92, 147.86, 150.31; EI-MS (*m/z*): [M]⁺ calcd for [C₁₈H₁₅N]⁺, 245.12; found: 245.

Scheme S2. Synthetic route of 1- or 2-coordinated TPP rhodium chlorides C₂₂-Rh-1 and C₃₀-Rh-2.

Synthesis of 21-23-dihidro-5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin (**TPP-OH**)^{S1}

Yield: 81%, violet powder. ¹H NMR (400 MHz, CDCl₃, δ): -2.89 (s, 2H), 7.20 (d, 8H, J = 8.3 Hz), 8.00 (d, 8H, J = 8.6 Hz), 8.87 (s, 8H), 9.96 (s, 4H). ESI-HRMS (m/z) [M+H]⁺ calcd for [C₄₄H₃₁N₄O₄]⁺: 679.2340; found: 679.2341.

Synthesis of 21-23-dihidro-5, 10, 15, 20-tetrakis(4-docosyloxyphenyl)porphyrin (C₂₂-2H)^{S2}

Yield: 48%, violet powder. ¹H NMR (400 MHz, CDCl₃, δ): -2.77 (s, 2H), 0.85 (t, 12H, *J* = 7.0 Hz), 1.20–1.50 (m, 144H), 1.60 (quint, 8H) 1.98 (quint, 8H), 4.25 (t, 8H, *J* = 6.6 Hz), 7.24 (s, 8H), 8.08 (d, 8H, *J* = 8.6 Hz), 8.84 (s, 8H). ESI-HRMS (*m*/*z*): [M+H]⁺ calcd for [C₁₃₂H₂₀₇N₄O₄]⁺, 1913.6145; found: 1913.6177.

Synthesis of 21,23-dihidro-5,10,15,20-tetrakis(4-triacontyloxyphenyl)porphyrin (C₃₀-2H)^{S3}

Yield: 21%, violet powder. ¹H NMR (400 MHz, CDCl₃, δ): -2.75 (s, 2H), 0.87 (t, 12H, J = 6.8 Hz), 1.10–1.40 (m, 208H), 1.63 (quint, 8H) 1.99 (quint, 8H), 4.25 (t, 8H, J = 6.4 Hz), 7.28 (s, 8H), 8.10 (d, 8H, J = 8.5 Hz), 8.86 (s, 8H). ESI-HRMS (m/z): [M+Na]⁺ calcd for C₁₆₄H₂₇₀N₄O₄Na⁺, 2384.0973; found: 2384.1252.

Synthesis of 1-coordinated 5,10,15,20-tetrakis(4-docosyloxyphenyl)porphyrin Rhodium chloride C₂₂-Rh-1

A mixture of C₂₂-2H (403.5 mg, 0.21 mmol) and $[Rh(CO)_2Cl]_2$ (338.5 mg, 0.87 mmol, 4.1 eq) in toluene (100 mL) was heated at 90 °C for 5 h. Obtained crude product after concentration was purified by column chromatography (silica gel, hexane/CH₂Cl₂ = 4/6) to give C₂₂-Rh as a red colored solid (141.2 mg, 0.069 mmol, 40%).

A mixture of C₂₂-Rh (43.5 mg, 21.2 μ mol) and 1 in chloroform (10 mL) was heated at 70 °C for 2 h. Obtained crude product after concentration was purified by column chromatography (silica gel, hexane/CH₂Cl₂ = 3:7) and GPC to give a red colored solid C₂₂-Rh-1 (23.0 mg, 10.0 μ mol, 47%).

C₂₂-Rh-1: ¹H NMR (400 MHz, CD₂Cl₂, δ): 0.76–0.81 (m, 14H), 1.10–1.49 (m, 144H), 1.54 (quint, 8H, *J* = 8.0 Hz) 1.89 (quint, 8H, *J* = 6.8 Hz), 2.26 (s, 3H), 4.17 (t, 8H, *J* = 6.4 Hz), 5.10 (d, 2H, *J* = 7.2 Hz), 6.36 (d, 1H, *J* = 4.0 Hz). 6.44 (d, 1H, *J* = 3.6 Hz), 6.54 (d, 1H, *J* = 4.0 Hz), 6.64 (d, 1H, *J* = 3.6 Hz), 7.16–7.23 (m, 8H), 7.96 (dd, 4H, *J*₁ = 8.4 Hz, *J*₂ = 2.4 Hz), 8.09 (dd, 4H, *J*₁ = 8.4 Hz, *J*₂ = 2.0 Hz), 8.86 (s, 8H); ¹³C NMR (101 MHz, CD₂Cl₂, δ): 14.25, 15.37, 23.06, 26.58, 29.73, 29.87, 30.07, 32.29, 68.73, 112.88, 113.07, 117.57, 121.49, 124.05, 125.05, 126.52, 127.57, 132.57, 134.32, 135.55, 135.92, 142.94, 145.80, 159.44; ESI-HRMS (*m*/*z*) [M+Na]⁺ calcd for [C₁₄₆H₂₁₅N₅O₄S₂ClRhNa]⁺: 2328.4885; found: 2329.5051. Synthesis of 2-coordinated 5,10,15,20-tetrakis(4-triacontyloxyphenyl) porphyrin Rhodium chloride C_{30} -Rh-2

A mixture of C₃₀-2H (25.9 mg, 11 μ mol) and [Rh(CO)₂Cl]₂ (19.1 mg, 49 μ mol, 4.5 eq) in toluene (10 mL) was heated at 90 °C for 4 h. Obtained crude product after concentration was purified by column chromatography (almina, chloroform) to give C₃₀-Rh as a red colored solid (14.8 mg, 5.9 μ mol, 54%).

A mixture of C₃₀-Rh (14.8 mg, 5.9 μ mol) and 2 (2.1 mg, 8.6 μ mol) in chloroform (10 mL) was heated at 70 °C for 1.5 h. Obtained crude product after concentration was purified by column chromatography (silica gel, hexane/CH₂Cl₂ = 3:7) and GPC to give a red colored solid C₃₀-Rh-2 (2.3 mg, 2.0 μ mol, 34%).

C₃₀-Rh-2: ¹H NMR (400 MHz, CDCl₃, δ): 0.85 (m, 14H), 1.15-1.40 (m, 208H), 1.60 (quint, 8H), 1.95 (quint, 8H, J = 7.5 Hz), 2.26 (s, 3H), 4.22 (t, 8H, J = 6.4 Hz), 5.26 (d, 2H, J = 6.8 Hz), 6.56 (d, 2H, J = 8.6 Hz), 7.11 (d, 2H, J = 8.0 Hz), 7.18–7.28 (m, 12H), 8.00 (dd, 4H, $J_1 = 8.4$ Hz, $J_2 = 2.2$ Hz), 8.20 (dd, 4H, $J_1 = 8.2$ Hz, $J_2 = 2.2$ Hz), 8.90 (s, 8H). ESI-HRMS (*m*/*z*): [M+K]⁺ calcd for [C₁₈₂H₂₈₃N₅O₄K]⁺, 2381.0504; found: 2382.0773.

B. UV-vis absorption spectra

UV-vis. absorption spectra were measured on a JASCO V-670. A quartz cuvette with 1 mm optical path was used.

C. STM measurements

All STM experiments were performed under ambient conditions. The STM images were acquired with an Agilent technologies 5500 scanning probe microscope in the constant current mode. The STM tips used in this research were mechanically cut from a Pt/Ir wire (80/20, diameter 0.25 mm). Highly oriented pyrolytic graphite (HOPG) (purchased from the Bruker Co.) was used as a substrate. Homogeneous solutions of porphyrins in octanoic acid were prepared by heating and filtering solution with membrane filter (0.20 μ m hole diameter). A drop of sample solution (8–10 μ L) was deposited onto a freshly cleaved HOPG surface. The tip was immersed into the solution, and then images were collected. Lattice constants were determined from two sequential images, considering the thermal drift during STM measurements. The effect of thermal drift was corrected by following procedures; one of the lattice derived from the up- and down-scan image was stretched, and the other was compressed along the vertical direction at the same scaling factor. Subsequently, the resulting set of lattices were sheared along the horizontal direction at the same shear angle with the opposite sign, so that the resulting unit cell parameters of the set of lattices are identical after the drift correction. The scaling factor and shear angle were estimated from the original unit cell parameters before the drift correction using the solver function in Microsoft Excel 2010. Apparent height analysis was performed using the STM image with compensation of the effect of the slope of HOPG substrate on the software Gwiddion.

In order to calculate conductance ratio from the difference in observed apparent height (Δh_{STM}) and estimated physical height (Δx), the the two-layer tunnel junction model proposed by Weiss *et al.*^{S4} can be employed. According to the model, the total conductance (G_{total}) between an STM tip and a substrate can be described by product of the gap conductance ($G_{gap} = A \exp(-\alpha d)$) and molecular conductance ($G_{\text{mol}} = B \exp(-\beta x)$), where A and B are contact conductance, α and β are decay constant of the gap and the molecule, d is the gap distance and x is the molecular length. Under the constant current mode, G_{total} is always constant, therefore, the conductance ratio $G_{\text{mol1}}/G_{\text{mol2}}$ is given by the following equation:

$$\frac{G_{\rm mol1}}{G_{\rm mol2}} = \frac{G_{\rm gap2}}{G_{\rm gap1}} = \frac{A_2}{A_1} \exp\{\alpha(d_1 - d_2)\}$$
(S1)

When similar molecules are scanned in the same STM image, it is reasonable to approximate that contact conductance of both molecules is equal $(A_1 = A_2)$. Additionally, the difference in apparent height (Δh_{STM}) is the sum of the difference in gap distance (Δd) and the one in molecular length (Δx) , therefore the term $d_1-d_2 = \Delta d$ is equal to $\Delta h_{\text{STM}}-\Delta x$. Then, equation (S1) is transformed to the following form;

$$\frac{G_{\text{mol1}}}{G_{\text{mol2}}} = \exp\{\alpha(\Delta h_{\text{STM}} - \Delta x)\}$$
(1)

Thus, conductance ratio can be derived from experimentally obtained Δh_{STM} and theoretically predictable Δx .

D. Theoretical calculations

Geometrical optimization was carried out at the B3LYP/6-31G(d) (for C,H,N,O,S,Cl), LANL2DZ (for Rh) level of theory implemented on the Gaussian 16 package.^{S5} Convergence at a local minimum structure was confirmed by no imaginary frequencies on frequency analysis. Stability of conformers was estimated from their values of sum of electronic and thermal Free Energies.

II. Additional Data

Fig. S1. (a) UV–vis absorption spectra C₂₂-Rh-1 in 1-octanoic acid. (b) Absorbance of C₂₂-Rh-1 in 1-octanoic acid at 429 nm. Molar extinction coefficient (ϵ) was calculated to be 2.84 × 10⁵ M⁻¹cm⁻¹ from the slope of the plot.

Fig. S2. STM images of a solution of (a) C_{22} -Rh-1 (4 × 10⁻⁶ M) and (b) C_{30} -Rh-2 (4 × 10⁻⁷ M) at the 1-octanoic acid–HOPG interface in the constant current mode (50 × 50 nm², $I_{set} = 30$ pA, $V_{bias} = -1.0$ V). White parallelograms show the unit cells.

Fig. S3. STM images of a mixed solution of C_{22} -Rh-1 and C_{30} -Rh-2 at the 1-octanoic acid-HOPG interface in the constant current mode White solid or broken lines show the boundaries between neighboring domains of C_{22} -Rh-1 and C_{30} -Rh-2. Measurement conditions in each image are shown in Table S1.

Table S1. Measurement conditions; concentrations of C_{22} -Rh-1 and C_{30} -Rh-2, setpoint currents, bias voltages and scan sizes of the STM images in Figure S3.

Figure	$[C_{22}-Rh-1] / M$	[C ₃₀ -Rh-2] / M	I_{set} / pA	$V_{ m bias}$ / V	Scan area / nm ²
а	1.7×10^{-5}	6.4×10^{-7}	30	-1.0	200
b	1.7×10^{-5}	6.4×10^{-7}	30	-1.0	100
с	6.4×10^{-6}	6.4×10^{-7}	30	-1.0	200
d	6.4×10^{-6}	6.4×10^{-7}	30	-1.0	100
e	3.1×10^{-7}	1.4×10^{-7}	20	-1.2	200
f	3.1×10 ⁻⁷	1.4×10^{-7}	20	-1.2	75

Table S2. Obtained lattice parameters of unit cells.

Table 52. Obtained fattice p	arameters of unit	cens.		
compound		<i>a</i> / nm	<i>b</i> / nm	α
C ₂₂ -Rh-1		2 99 10 01	1 72+0.01	٥٦°
(Fig. S2a)		5.88±0.01	1.72 ± 0.01	82
C ₃₀ -Rh-2		5 04+0 04	1.77 ± 0.01	83°
(Fig. S2b)		5.04±0.04	1.//±0.01	85
C_{22} -Rh-1 + C_{30} -Rh-2	Domain A	3.90 ± 0.04	1.83 ± 0.02	83°
(Fig. 3a)	Domain B	4.87±0.01	$1.82{\pm}0.01$	86°

Fig. S4. Sequential STM images of a mixed solution of C_{22} -Rh-1 and C_{30} -Rh-2 at the 1-octanoic acid–HOPG interface in the constant current mode in the same condition and scan area with Figure S3f.

Fig. S5. Histograms of apparent height in the domain of (top) C₂₂-Rh-1 and (bottom) C₃₀-Rh-2 for the STM images in Figure S4.

and averaged $\Delta n_{\rm SIM}$.			
Scan	C ₂₂ -Rh-1 / Å	C30-Rh-2 / Å	$\Delta h_{ m STM}$ / Å
a	5.87±0.85	7.14±0.76	-1.27±1.14
b	5.69±0.81	6.72 ± 0.90	-1.03 ± 1.21
с	6.30±1.12	$7.16{\pm}0.80$	-0.86 ± 1.37
d	$6.04{\pm}0.78$	6.87 ± 0.85	-0.83 ± 1.15
e	5.22±1.08	6.28±1.10	$-1.07{\pm}1.54$
f	4.46±1.29	6.12±1.26	-1.65 ± 2.10
g	5.88±0.92	6.87±0.94	$-1.00{\pm}1.36$
Average	_	_	-1.10±0.55

Table S3. Apparent heights of C₂₂-Rh-1 and C₃₀-Rh-2, their difference Δh_{STM} from each STM images in Fig. S4 and averaged Δh_{STM} .

Table S4. Physical heights, energies, and abundance ratio at 298 K of C₁-Rh-1-*trans*, C₁-Rh-1-*cis*, and C₁-Rh-2 calculated at the B3LYP/6-31G(d)(for C,H,N,O,S,Cl),LANL2DZ(for Rh) level.

	C ₁ -Rh-1-trans	C ₁ -Rh-1-cis	C ₁ -Rh-2
Physical height ¹ / Å	16.498	15.347	17.563
Energy ² /a.u	-4330.722981	-4330.721758	-
Abundance ratio	1	0.27	-

¹Physical height of the complexes were calculated as sum of the Rh–Cl bond length and wire height. Wire height of each complex was measured as the distance between the top methyl carbon atom of the wire unit and the mean plane of porphyrin defined by porphyrynic 24 atoms. We consider that *trans*-effect of these wires was essentially the same because optimized Rh–Cl lengths of these complexes were all the same as 2.385 Å.

²Energies after correction of zero-point vibration.

Fig. S6. Merged histograms of apparent height in the domain of C_{22} -Rh-1 and C_{30} -Rh-2 for all the seven STM images in Figure S4.

Cartesian coordinate [Å] of optimized structure and the sum of electronic and thermal Free Energies

1-trans

Conton				dinatos (Ang	
Number	Number	Type	X	Y	Z
1	7	0	-1.062374	1.685034	1.652033
2	, 6	0	-0.849595	5.712547	-0.310495
4	1	0	0.135512	5.253708	-0.311400
5	7	0	-2.061885	-1.657363	-0.544663
6	7	0	-2.311753	1.212007	-0.948147
7	6	0	-1.302816	2.985004	1.285728
8	7	0	-0.817546	-1.185748	2.052681
9	6	0	-2.218580	7.696687	-0.497681
10	6	0	1.485291	0.249/4/	0.341802
12	1	0	-1 979001	4 905616	-0 132368
13	6	0	-0.593558	1.694234	2,942869
14	6	0	-5.409668	-1.267700	-6.097003
15	6	0	-0.534225	3.061732	3.409864
16	1	0	-0.222512	3.365933	4.398071
17	6	0	-0.309940	-0.761373	3.254912
18	6	0	-2.956325	3.042767	-2.169291
19	1	0	-3.087258	4.078076	-2.447168
20	6	0	0.288265	0.801/81 5 531385	-0 137130
21	1	0	-3.239379	4 928569	0.137139
23	6	0	-1.848284	3,426937	0.067694
24	6	0	-0.961099	3.853834	2.390478
25	1	0	-1.067001	4.928564	2.387067
26	6	0	0.503182	-0.143511	-1.706472
27	1	0	-0.411102	-0.312186	-2.260425
28	6	0	-0.440810	0.367342	6.204406
29	1	0	-1.391694	-0.134833	6.050621
30 31	6	0	2 751156	0.575107	-0 22/609
32	1	0	3.605276	0.464642	0.418006
33	6	0	-2.758821	-1.672867	-1.727172
34	6	0	0.164633	-1.911035	3.993694
35	1	0	0.638332	-1.870998	4.963432
36	6	0	1.509202	1.460587	5.324348
37	1	0	2.097793	1.806028	4.478711
38	6	0	-3.361646	6.903246 1 232240	-0.316884
40	6	9	-3.387586	-0.533635	-4.988110
41	6	0	-2.323620	2.583823	-0.951662
42	6	0	-0.725036	-2.554218	2.017781
43	6	0	1.979747	1.674088	6.613905
44	6	0	-3.358882	1.939789	-2.855080
45	1	0	-3.887123	1.901766	-3.796298
46	6	0	-0.223152	0.570103	3.703012
47	6	0	-1.830109	-2.958/66	-0.1/8063
40	6	0	-3.182254	-0.550473	-2.461313
50	6	0	-2.949658	0.784956	-2.086318
51	6	0	-2.957591	-3.046251	-2.135264
52	1	0	-3.467223	-3.356626	-3.035453
53	6	0	-3.947737	-0.797274	-3.725363
54	6	0	1.732992	-0.136901	-2.345301
55	1	0	1.767290	-0.320728	-3.413315
50	6	0	-0.084189	-3.009932	3.231955
58	1	0	-1 183962	-4.059922	0 990763
59	6	0	-4.102179	-0.762816	-6.157526
60	6	õ	2.913052	0.081645	-1.608495
61	6	0	-5.985955	-1.537301	-4.850224
62	6	0	-5.253557	-1.300312	-3.683453
63	6	0	-2.392563	-3.834903	-1.182387
64	1	0	-2.361564	-4.913950	-1.149205
65	1	0	2.924602	2.177896	6.793173
66	1	0	-0.582985	0.229215	8.341808

67	1	0	-2.374647	-0.144774	-5.050463	
68	1	0	-3.668036	-0.562594	-7.132282	
69	1	0	-6.996386	-1.922185	-4.771798	
70	1	0	-5.710938	-1.504491	-2.719446	
71	1	0	-4.333620	7.386843	-0.314178	
72	1	0	-0.054482	7.681960	-0.633009	
73	6	0	-1.010875	-4.873922	1.172250	
74	6	0	-0.119034	-5.605266	0.366877	
75	6	0	-1.735839	-5.573654	2.144234	
76	6	â	0 042164	-6 975648	0 529267	
70	1	õ	0 457876	-5 085861	-0 393/55	
79	6	0	-1 5860/3	-6 052373	2 220036	
78	1	0	-1.580045	-0.9J2J7J	2.320030	
79	I C	0	-2.430/49	-5.052914	2.771742	
80	6	0	-0.691/33	-7.660827	1.509165	
81	1	0	0./34503	-7.538979	-0.088824	
82	1	0	-2.172109	-7.455991	3.080443	
83	17	0	-3.709914	-0.023880	1.589678	
84	45	0	-1.562501	0.013245	0.552444	
85	8	0	-2.443834	9.032963	-0.666669	
86	8	0	-0.463779	-9.004795	1.590491	
87	8	0	-6.028364	-1.459241	-7.299004	
88	6	0	-1.324865	9.883995	-0.846232	
89	1	0	-1.728913	10.892174	-0.956519	
90	1	0	-0.651946	9.856766	0.021470	
91	1	Â	-0.756720	9.621300	-1.748870	
92	-	å	-7 353656	-1 963469	-7 297613	
92	1	ø	-7 648130	-2 035973	-8 3/6335	
93	1	0	7 407416	2.055575	-0.040000 c 00c010	
94	1	0	-7.407410	1 207012		
95	1 C	0	-0.045041	-1.28/913	-0.//5/8/	
96	6	0	-1.181286	-9.748623	2.560961	
97	1	0	-0.849546	-10.782981	2.451888	
98	1	0	-0.960848	-9.403371	3.580038	
99	1	0	-2.265090	-9.696281	2.391226	
100	8	0	1.781021	1.489364	8.943012	
101	6	0	1.068460	1.070734	10.095272	
102	1	0	1.675746	1.374169	10.950207	
103	1	0	0.084507	1.554049	10.160244	
104	1	0	0.934892	-0.019215	10.114700	
105	6	0	4.218785	0.101842	-2.256922	
106	6	0	4.507301	0.219366	-3.601906	
107	16	0	5.706524	-0.027864	-1.334247	
108	6	0	5,890841	0.223089	-3.894143	
109	1	0	3.743432	0.332306	-4.363112	
110	-	â	6 693442	0 104682	-2 774599	
111	1	0	6 201071	0.331650	-1 806208	
112	6	0	8 136750	0.001159	-7 680520	
112	6	0	0.130/39	0.0/1150	1 504154	
115	0	0	0.940339	0.219527	-1.564154	
114	16	0	9.119863	-0.192052	-4.122911	
115	6	0	10.334368	0.129352	-1.880806	
116	1	0	8.557165	0.404792	-0.588364	
117	6	0	10.605164	-0.085529	-3.207962	
118	1	0	11.115001	0.227287	-1.133301	
119	6	0	11.939421	-0.225194	-3.877289	
120	1	0	12.048449	-1.196237	-4.375787	
121	1	0	12.101519	0.552056	-4.634245	
122	1	0	12.736364	-0.139316	-3.132135	
Zero-poin	t correction	=		0.945227	(Hartree/Parti	cle)
Thermal c	orrection to	Energy=		1.010665	(,	/
Thermal c	orrection to	Enthalov=		1,011609		
Thermal c	orrection to	Gibbs Free	Energy=	0 834279		
	ectronic and	zero-noint	Energies-	-1220	722981	
	actronic and	thopmal Enc	ngios-	-4000.	657542	
	actionic and	thopmal Fret	balpion-	-4000.	657342	
	ectronic and	thopmal Fra-	naipies=	-4000.	05000	
Sum of el	ectronite and	chermat Fre	e chergrez=	-4330.	025660	

C₁-Rh-1-cis

Center Number	Atomic Number	Atomic Type	Coord X	linates (Angs Y	stroms) Z
1	7	 Ю	-0.654100	1.544070	1.884386
2	7	0	0.279971	0.052652	-0.517214
3	6	0	-0.557445	5.729490	0.277592
4	1	0	0.380679	5.229485	0.052022
5	7	0	-2.237009	-1.521628	-0.372037
6 7	7	0	-2.3832/1 -0 878535	2 882754	-0.466426
8	7	õ	-0.510724	-1.359430	1.975853
9	6	0	-1.812224	7.781390	0.524506
10	6	0	1.520106	0.142104	-0.003762
11	1	0	1.589224	0.194765	1.074963
12	6	0	-1.683053	4.960152	3 0600/3
13	6	0	-6.514649	-0.447297	-5.140149
15	6	0	0.268189	2.718365	3.626529
16	1	0	0.773097	2.910711	4.561543
17	6	0	0.233327	-1.076798	3.093722
18	6	0	-3.127743	3.348721	-1.379800
19	1	0	-3.244119	4.410884 0 271658	-1.536255
20	6	0	-2.882197	5.638791	0.879442
22	1	0	-3.766931	5.064711	1.139553
23	6	0	-1.609031	3.464695	0.634907
24	6	0	-0.289171	3.623924	2.779103
25	1	0	-0.328717	4.697418	2.890204
26	6	0	0.156956	-0.012956	-1.856455
27	6	0	0.712434	-0.238855	6.103802
29	1	õ	-0.279054	-0.682358	6.088133
30	6	0	1.414435	-0.180507	7.310894
31	6	0	2.659585	0.173175	-0.794107
32	1	0	3.626831	0.264413	-0.310360
33	6	0	-3.139373	-1.391545	-1.398292
34	ь 1	0	0.766971 1 412649	-2.312171	3.624438
36	6	õ	2.530076	0.851237	4.972232
37	1	0	2.973151	1.252588	4.064788
38	6	0	-2.949937	7.025835	0.846394
39	6	0	2.687890	0.399620	7.344669
40	6	0	-4.282537	0.083949	-4.370304
41 42	6	0	-2.312333	-2 720646	1 802860
43	6	õ	3.241749	0.915991	6.163579
44	6	0	-3.715007	2.336340	-2.071996
45	1	0	-4.407503	2.413124	-2.897197
46	6	0	0.478973	0.199283	3.634213
47	6	0	-2.020993	-2.861395	-0.1/1394
40	6	0	-3.621282	-0.185633	-1.937986
50	6	0	-3.243228	1.095508	-1.497745
51	6	0	-3.492934	-2.708704	-1.880165
52	1	0	-4.177622	-2.907501	-2.691403
53	6	0	-4.618490	-0.274639	-3.052624
54	6 1	0	1.246611	0.00608/	-2./1265/
56	6	0	0.317779	-3.319587	2.828816
57	1	0	0.524658	-4.375722	2.918275
58	6	0	-1.197830	-3.439168	0.810993
59	6	0	-5.211176	0.001256	-5.400576
60	6	0	2.552370	0.106075	-2.195246
61	6	0	-6.869726	-0.809496	-3.835577
63	о 6	6 0	-2.811140	-3.610224	-2.01033
64	1	õ	-2.840405	-4.687695	-1.192017
65	- 1	0	4.232329	1.358387	6.205290
66	1	0	0.957465	-0.580805	8.208783
67	1	0	-3.275690	0.430800	-4.587350
68	1	0	-4.950393	0.274761	-6.418377

69	1	0	-7.870970	-1.153900	-3.602855
70	1	0	-6.209421	-0.994840	-1.799230
71	1	0	-3.873292	7.549692	1.073558
72	1	0	0.285679	7.683438	-0.014951
73	6	0	-1.083638	-4.932413	0.825694
74	6	0	-0.405336	-5.619366	-0.197517
75	6	0	-1.654455	-5.691985	1.853928
76	6	0	-0.300421	-7.004731	-0.190147
77	1	0	0.049047	-5.053477	-1.006236
78	6	0	-1.558630	-7.086453	1.875896
79	1	0	-2.192895	-5.185431	2.649984
80	6	0	-0.877496	-7.750134	0.848886
81	1	0	0.227879	-7.534252	-0.977068
82	1	0	-2.021122	-7.636263	2.687761
83	17	0	-3.366125	-0.037695	2.170003
84	45	0	-1.446440	0.010030	0.755528
85	8	0	-1.981375	9,136489	0.518077
86	8	0	-0.720710	-9.104215	0.766554
87	8	e e	-7.352761	-0.493616	-6.217030
88	6	â	-0 863449	9 950159	0 207101
89	1	0 0	-1 217681	10 981307	0.267747
90	1	0	-0.046651	0 808807	0.202747
90	1	0	-0.040051	9.000007	0.927005
91	I C	0	-0.400090	9.751295	-0.805544
92	0	0	-0.004552	-0.934032	-0.011114
93	1	0	-9.169049	-0.892295	-6.988495
94	1	0	-8./15818	-1.966384	-5.6359/9
95	I	0	-9.223249	-0.281925	-5.311294
96	6	0	-1.286306	-9.90/568	1./88618
97	1	0	-1.043944	-10.939630	1.52/865
98	1	0	-0.857660	-9.672487	2.772187
99	1	0	-2.377568	-9.793012	1.836403
100	8	0	3.463730	0.510701	8.462548
101	6	0	2.951499	0.009782	9.686177
102	1	0	3.723134	0.199812	10.434666
103	1	0	2.027592	0.525823	9.979494
104	1	0	2.757753	-1.069864	9.631923
105	6	0	3.715565	0.137357	-3.074245
106	6	0	3.758142	0.381326	-4.433072
107	16	0	5.336207	-0.147103	-2.466601
108	6	0	5.062427	0.365017	-4.978735
109	1	0	2.875081	0.606046	-5.020979
110	6	0	6.047464	0.095218	-4.046454
111	1	0	5.282686	0.576116	-6.018971
112	6	0	7.473774	-0.017836	-4.273295
113	6	0	8.116194	-0.325308	-5.453315
114	16	0	8.652538	0.261729	-3.001677
115	6	0	9.533737	-0.338623	-5.338959
116	1	0	7.583061	-0.561052	-6.367849
117	6	0	9.992245	-0.051182	-4.078337
118	1	0	10.200162	-0.566392	-6.164792
119	6	0	11,409390	0.012172	-3.592769
120	1	0	11.663997	1.003259	-3.197571
121	- 1	â	11,602458	-0.717704	-2.796984
122	1	â	12 092497	-0 204606	-4 419915
	<u>+</u>		12:052457	0.204000	+.+15515
Zono-noint	connection-	_		0 015230	(Hantnoo/Panticlo)
Thormal co	noction to	- Enongy-		1 010640	
Thermal co	nection to	Enthalov-		1 0115040	
	nection to	Cibbs Enco	Enongy-	0 0011004	
	stronic and	JUDS FIRE	Enongios-	0.004000	701759
	ctronic and	thopmal Fra	ruer.grez=	-4550.	(L1/JO
Sum of ele	ctronic and	thormal Ene	ngres=	-4330.0	0000040
Sum of ele	ctronic and	thermal Ent	.naipies=	-4330.0	404CCU
Sum OT ele	ccronic and	chermai Fre	e chergies=	-4330.8	032323

C₁-Rh-2

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Ŷ	Ź
			_1 506120	0 177630	 2 077812
2	7	0	0.464294	0.002811	-0.020825
3	6	0	-0.270037	4.489804	3.574066
4	1	0	0.579854	3.813702	3.534535
5	7	0	-1.761934	-0.295887	-1.968271
6 7	7	0	-1.612961	2.112360	-0.345018
8	7	0	-1.745844	-1.929634	0.449350
9	6	0	-1.274647	6.518274	4.423774
10	6	0	1.161758	-0.658156	0.920564
11	1	0	0.581711	-1.127114	1.704710
12	6	0	-1.4148/4	4.192534	2.826064
13	6	0	-2.322825	4.446842	-6.370199
15	6	0	-1.799878	0.247843	4.351511
16	1	0	-1.933199	-0.227084	5.312201
17	6	0	-1.786614	-2.511953	1.691359
18	6	0	-1.528797	4.390223	-0.093678
20	6	0	-1.946007	-2.676340	4.164824
21	6	Ő	-2.497283	5.088983	2.899401
22	1	0	-3.402326	4.874130	2.338399
23	6	0	-1.487941	2.955560	1.984708
24	6	0	-1.682148	1.576725	4.088615
25	1	0	-1.702959 1 150107	2.395105	4.792957
20	1	0	0.559954	1.122981	-1.754022
28	6	0	-3.113613	-3.407473	4.416818
29	1	0	-3.933359	-3.355753	3.705953
30	6	0	-3.255630	-4.190806	5.565580
31	6	0	2.547784	-0.736646	0.908060
33	6	0	-1.874642	0.637449	-2.968687
34	6	0	-1.759936	-3.949743	1.533946
35	1	0	-1.755205	-4.661312	2.346388
36	6	0	-0.908555	-2.754455	5.112123
37	1	0	0.010346	-2.200033	4.941446
20 39	6	0	-2.432090	-4.254713	6 494548
40	6	Ő	-0.938260	3.617574	-4.566673
41	6	0	-1.526134	3.114154	0.588489
42	6	0	-1.740298	-2.933868	-0.485289
43	6	0	-1.033075	-3.529226	6.258399
44 45	1	0	-1.732341	4.851868	-2.229369
46	6	0	-1.815662	-1.842165	2.929103
47	6	0	-1.803793	-1.538503	-2.548212
48	6	0	-0.188051	5.638021	4.367790
49 50	6	0	-1.856884	2.034909	-2.8122/9
50	6	0	-1.971347	-0.047459	-4.238931
52	1	0	-2.059326	0.439328	-5.198986
53	6	0	-2.010853	2.872478	-4.044993
54	6	0	2.535949	0.570587	-1.087150
55	1	0	3.026552	1.054/24	-1.924848
57	1	0	-1.688272	-5.171663	-0.287440
58	6	0	-1.762473	-2.775747	-1.882095
59	6	0	-1.086293	4.393689	-5.709644
60	6	0	3.282110	-0.113657	-0.113883
67 61	6	6 0	-3,40336/ _3,737616	3./12601 2.937//A	-5.86/584
63	6	0	-1.933122	-1.381938	-3.980498
64	1	0	-1.994976	-2.195183	-4.688488
65	1	0	-0.229834	-3.592834	6.986051
66	1	0	-4.180205	-4.734025	5.724741
67 68	1 1	6 0	0.026362 -0.256990	3.583/1/ 4.965673	-4.06/140
69	1	Ø	-4.372343	3.738674	-6.353028

S21

70	1	0	-4.083261	2.376763	-4.327888
71	1	0	-3.269413	6.922059	3.744882
72	1	0	0.719963	5.832687	4.927310
73	6	0	-1.786146	-4.014838	-2.722926
74	6	0	-0.686885	-4,368576	-3.526333
75	6	0	-2,904800	-4.856512	-2.741013
76	6	0 0	-0.705186	-5.515487	-4.310228
70	1	9	0 19/8//	-3 733537	-3 529168
79	5	0	-2 030666	-6 013680	-3 52/539
70	1	0	-2.939000	4 500152	-3.324339
/9	I	0	-3.//0/11	-4.599155	-2.137545
80	6	0	-1.834102	-6.348478	-4.315005
81	1	0	0.145338	-5.791022	-4.926193
82	1	0	-3.828841	-6.633824	-3.513854
83	17	0	-4.060679	0.187016	0.132407
84	45	0	-1.679147	0.090337	0.051989
85	8	0	-1.308959	7.666871	5.161539
86	8	0	-1.755537	-7.450705	-5.117259
87	8	0	-2.367695	5.236042	-7.483504
88	6	9	-0 169282	8 001375	5 93/720
00	1	0	0,105202	0.001373	6 436301
69	1	0	-0.411580	8.940329	6.436201
90	1	0	0.04/541	7.233432	6.689507
91	1	0	0./19130	8.146301	5.305201
92	6	0	-3.593946	5.330320	-8.189285
93	1	0	-3.405719	6.001645	-9.029332
94	1	0	-3.916586	4.352848	-8.572204
95	1	0	-4.390959	5.750584	-7.561466
96	6	0	-2.869885	-8.325938	-5.164522
97	1	0	-2.594707	-9.125171	-5.855414
98	1	â	-3 087002	-8 758482	-4 178592
90	1	9	-3 768507	-7 817396	-5 538769
100	1	0	-3.700507	-7.817590	-3.338709
100	8	0	-2.236698	-4.984594	7.647951
101	6	0	-3.403906	-5./34856	7.940345
102	1	0	-3.209956	-6.232439	8.892475
103	1	0	-4.285472	-5.088090	8.042701
104	1	0	-3.601817	-6.492032	7.169809
105	6	0	4.759865	-0.175001	-0.161654
106	6	0	5.452807	-1.315914	0.277545
107	6	0	5.515750	0.905528	-0.647243
108	6	0	6.841671	-1.373372	0.231244
109	1	â	4 898108	-2 176364	0 640887
110	- -	0	6 004764	0 017100	0.690166
111	1	0	5 012202	1 900740	-0.089130
111	I	0	5.012303	1.809740	-0.977464
112	6	0	7.600977	-0.293208	-0.251977
113	1	0	7.348253	-2.263306	0.593119
114	1	0	7.459642	1.693135	-1.084892
115	6	0	9.081989	-0.354390	-0.299163
116	6	0	9.865346	0.779876	-0.027044
117	6	0	9.751035	-1.549406	-0.613259
118	6	0	11.256336	0.718983	-0.068374
119	1	0	9.381114	1.711802	0.251600
120	6	0	11.142197	-1,604253	-0.654464
121	1	â	9 175682	-2 439808	-0 851427
122	5	0	11 023005	_0 /71012	-0 386226
122	1	0	11 025/10	1 610020	0.160520
125	1	0	11.655410	1.610920	0.160529
124	1	0	11.630801	-2.542862	-0.906616
125	6	0	13.430678	-0.527197	-0.461854
126	1	0	13.809566	-1.521542	-0.202260
127	1	0	13.786428	-0.298738	-1.475710
128	1	0	13.893080	0.199246	0.214932
Zero-po	int correction=	=		1.012584	(Hartree/Particle)
Thermal	. correction to	Energv=		1.078450	
Thermal	correction to	Enthalnv=		1.079394	
Thermal	correction to	Gibbs Free	Energy=	0,001010	
	alactronic and	zano-noint	Energias-	_ 3600	1/138/09
	electronic and	thopmal Free	LICI BIES=	-2005	077044
	electronic and	thermal Ene	sigres=	-3689	.077000
Sum of	electronic and	thermal Ent	naipies=	-3689	.0//000
Sum of	electronic and	thermal Fre	e Energies=	-3689	.254481

III. NMR and MASS spectra

¹H NMR spectrum of **1** (400 MHz, CDCl₃)

¹³C NMR spectrum of **1** (101 MHz, CDCl₃)

¹H NMR spectrum of **2** (400 MHz, CDCl₃)

¹³C NMR spectrum of **2** (101 MHz, CDCl₃)

-0 *221.*0 LLL'0 54.45 ¢6L'0 120,20 118.0 1.0 1180 2 85 9 1 0.7 06[.]L svн 080 1180 2521.0 2521.0 2521.0 2521.0 078.1 2.0 068.1 69'7 0.9 952.2 1.0 = <u>9</u> — 80 3.0 n ________ 7 . 099'1 21 - 822.1 21 - 602.1 602.1 Carphology 4.153 4.169 4.185 £8'L 4.0 5 2 0.1 % 1 0.6 % 5.0 2.091 2.109 2.236 2.238 2.238 5.0 64.1 17 oton 65£'9 69£'9 88.0 6.0 C22H45 -5 88.0 88.0 88.0 755.9 7.1 7.0 6.9 6.8 245.9 263.0 C22-Rh-1 ö 1\$9.6 2.186 - 661.7 - 7.186 - 7.220 7.0 C22H450 C22H450 X : parts per Million : Proton 08'E \$1'E 8.0 00.8 9.0 2.0 0.1 6[:]0 8:0 9[:]0 5.0 p.0 £.0 2[:]0 1.0 0 aonadance

¹H NMR spectrum of C₂₂-Rh-1 (400 MHz, CD₂Cl₂)

S29

¹H NMR spectrum of C₃₀-Rh-2 (400 MHz, CDCl₃)

References

- S1. S.-T. Liu, K. V. Reddy and R.-Y. Lai, *Tetrahedron*, 2007, 63, 1821–1825.
- S2. J. Otsuki, S. Kawaguchi, T. Yamakawa, M. Asakawa and K. Miyake, Langmuir, 2006, 22, 5708–5715.
- S3. T. Ikeda, M. Asakawa, M. Goto, K. Miyake, T. Ishida and T. Shimizu, Langmuir, 2004, 22, 5454–5459.
- S4. L. A. Bumm, J. J. Arnold, T. D. Dunbar, D. L. Allara and P. S. Weiss, J. Phys. Chem B, 1999, 103, 8122–8127.
- S5. Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.