Supporting Information

Synthesis and characterization of a supported Pd complex on volcanic pumice laminates textured by cellulose for facilitating Suzuki–Miyaura cross-coupling reactions

Siavash Salek Soltani¹, Reza Taheri-Ledari^{2,a}, S. Morteza F. Farnia^{*,1}, Ali Maleki^{*,2}, Alireza Foroumadi^{*,3,4}

¹ School of Chemistry, College of Science, University of Tehran, Tehran, Iran

² Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran

³ Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran

⁴ Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

^a Co-first author.

*Corresponding author's information: S. Morteza F. Farnia: <u>mfarnia@khayam.ut.ac.ir</u> (Tel: +98 2166495291); Ali Maleki: <u>maleki@iust.ac.ir</u> (Fax: +98-21-73021584; Tel: +98-21-77240540-50); Alireza Foroumadi: <u>aforoumadi@yahoo.com</u> (Tel: +98 2166954708).

Author's ORCID numbers:
 Siavash Salek Soltani: 0000-0001-5927-4039
 Reza Taheri-Ledari: 0000-0002-6511-9411
 S. Morteza F. Farnia: 0000-0001-9770-2284
 Ali Maleki: 0000-0001-5490-3350
 Alireza Foroumadi: 0000-0003-2416-5611

Content	Page
Table S1. A brief list of the applied materials and equipment	S3
Figure S1. ¹ H-NMR spectrum of biphenyl (a)	S4
Figure S2 . ¹ H-NMR spectrum of 4-carbaldehyde-biphenyl (b)	S5
Figure S3 . ¹ H-NMR spectrum of 4-methanol-biphenyl (c)	S6
Figure S4. ¹ H-NMR spectrum of 4-methyl-biphenyl (d)	S7
Figure S5. ¹ H-NMR spectrum of 4-methoxy-biphenyl (e)	S8
Figure S6. ¹ H-NMR spectrum of 4-nitro-biphenyl (f)	S9
Figure S7. ¹ H-NMR spectrum of 1-biphenyl-4-yl-ethanone (g)	S10
Figure S8 . ¹ H-NMR spectrum of biphenyl-4-carbonitrile (h)	S11
Figure S9. ¹ H-NMR spectrum of 2-methyl-biphenyl (i)	S12
Figure S10. ¹ H-NMR spectrum of biphenyl-3-ol (j)	S13
Figure S11. Size distribution diagram of the formed Pd nanoparticles	S14
Calculations of mol% of VPMP@CLS-Pd catalyst	

 Table S1. A brief list of the applied materials and equipment.

Material / instrument	Brand
Pumice powder	Was purchased from a market in Tehran, IRAN
Hydrochloric acid	Merck, 37%
Cellulose powder	Sigma Aldrich (fibers, medium)
Palladium chloride	Sigma Aldrich (99%)
Potassium hydroxide	Merck, pellets for analysis
Potassium carbonate	Sigma Aldrich (ACS reagent)
Sodium borohydride	Sigma Aldrich (≥98.0%)
Triphenylphosphine	Sigma Aldrich (for synthesis)
Solvents	Merck
Aryl halide derivatives	Sigma Aldrich
Phenylboronic acid	Sigma Aldrich (95.0%)
Silica gel	Sigma Aldrich (for column chromatography, 60)
Ball mill	Retsch PM-100, Retsch GmbH & amp, Germany
Furnace	Muffle Furnace (Omron E5CC)
Heater-stirrer	HEIDOLPH Magnetic Stirrer with Heating
Ultrasound cleaner bath	KQ-250 DE
Oven	Memmert (UN30)
Crucible	EISCO (porcelain)
Glassware	Isolab
TLC plate	Merck (0.2 mm, 60 F254 aluminium sheets)
FT-IR spectrometer	Shimadzu IR-470 (KBr pellets)
EDX spectrometer	Numerix DXP-X10P
VSM	Lakeshore 7407
TGA	STA504
FESEM	Sigma-Zeiss microscope with attached camera
TEM	Philips CM-12
BET	Micromeritics ASAP 2010
XPS	ESCALAB Xib, and Thermo Scientific
Melting point measurement apparatus	Capillary melting point
NMR spectrometer	Bruker FT-NMR

Figure S1. ¹H-NMR spectrum of biphenyl (a).

Figure S2. ¹H-NMR spectrum of 4-carbaldehyde-biphenyl (**b**).

Figure S3. ¹H-NMR spectrum of 4-methanol-biphenyl (c).

Figure S4. ¹H-NMR spectrum of 4-methyl-biphenyl (**d**).

Figure S5. ¹H-NMR spectrum of 4-methoxy-biphenyl (e).

Figure S6. ¹H-NMR spectrum of 4-nitro-biphenyl (f).

Figure S7. ¹H-NMR spectrum of 1-biphenyl-4-yl-ethanone (**g**).

Figure S8. ¹H-NMR spectrum of biphenyl-4-carbonitrile (h).

Figure S9. ¹H-NMR spectrum of 2-methyl-biphenyl (i).

Figure S10. ¹H-NMR spectrum of biphenyl-3-ol (j).

Figure S11. Size distribution diagram of the formed Pd nanoparticles.

Calculations of mol% of VPMP@CLS-Pd catalyst:

4-Iodonitrobenzene (as reactant): 1.0 mmol = 0.249 g, and VPMP@CLS-Pd (as catalyst): 0.01 g were used.

From EDX analysis (Figure 2b), 3.5 wt% of the total weight of catalyst is related to Pd nanoparticles.

 3.5×0.01 g / 100 = 0.00035 g (pure weight of Pd nanoparticles in 0.01 g of catalyst)

 $=> (0.00035 / 0.249) \times 100 = 0.14$ wt% (weight percentage of the applied catalyst)

0.00035 g (Pd) = 0.00328 mmol (Pd)

=> (0.00328 mmol of Pd/ 1 mmol of reactant) × 100 = 0.33 mol%