Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supporting information

Table S1. Summary of crystallite size, band gap energy, particle size and sharpness, derived for the UV-Vis absorption spectra, and the photocatalytic reactions of

the reported anatase particles prepared in SBA-15.

Ref.	Crystallization temp./°C	BJH pore diameter of SBA-15/nm	^a Crystallite size/nm	^b Band gap/eV	^c Particle size/nm	^d Sharpness/nm	Reaction
[1]		No peak3.69.75.0No peak3.69.74.53.513.0	No peak	3.6	9.7	100	
	550		No peak	3.6	9.7	119	H ₂ evolution from
	550		119	aqueous methanol			
			18.0	3.3	>20.0	144	
			6.2	3.8	5.8		
			6.7	3.7	6.8	.8	
[2]	550	7 5	6.8	3.7	7.3	UV-Vis absorption	Oxidation of cyanide
	550	7.5	6.4	3.8	6.2	given.	
			8.1	3.6	8.7	_ 0	
			9.7	3.6	9.7	_	
		No pea	No peak		-	67	
[3]	500	C F	No peak		-	73	
	500	0.5	4.5	- NO GATA -	-	103	Oxidation of CO
			6.5		-	90	
[4]	550	550 0.0	8.7	No data	-	86	Decolorization of
	550	8.0	15.0	- NO Gata -	-	100	methylene blue
[5]	400	7.6	8.0	3.5	13.0	63	Decolorization of

			13.0	3.5	15.0	78	methyl orange
			23.0	3.4	20.0	78	
[6]	550		12.4	3.3	>20.0	114	Decolorization of methyl orange
	550	8.0	9.3	3.3	>20.0	119	
	600		No peak		-	106	
	700	7.5	No peak	No data	_	103	Decolorization of methylene blue
	800		11.5		_	100	
			No peak	3.6	9.0	75	
[0]	500	6.2	No peak	3.6	11.0	69	
[8]		6.2	No peak	3.5	13.0	75	
			No peak	3.5	13.0	79	
[9]	400	7.5	No peak	3.9	5.5	Broad	Decomposition of
			No peak	3.8	6.5	Broad	
			No peak	3.8	7.0	Broad	Octrogen
[10]	500	7.0	6.0	3.1	>20.	158	-
	700	4.0	No peak		-	64	_
			7.2	No data	_	71	
[11]			6.2		_	71	Decolorization of
			10.5		_	76	
			14.6		_	79	
[12]	400	400 5.2	4.4	3.6	9.0	100	Decolorization o
			4.5	3.4	17.0	100	
			4.7	3.4	17.0	100	
[13]	550	5.9	4.4	No data	-	151	Decomposition o

			4.8		-	181	alizarin
			5.2		-	172	
			5.6		-	149	
			6.2		-	183	
	550		No peak	2.9	>20.0	151	Oxidation of Phenol
[1 4]		8.0	No peak	2.4	>20.0	151	
[14]		8.0	No peak	2.0	>20.0	214	
			8.2 ^e	2.0	>20.0	134	
[1]	550	6.5	No peak	3.6	9.5	140	Decolorization of
[15]			No peak	3.4	20.0	156	methylene blue
			3.7	No data	12.0	105	Decolorization of
[16]	500	9.4	4.8		14.0	107	methylene blue, methyl orange, rhodamine B and oxidation of phenol
[17]	550	6.7	No peak		-	119	— Oxidation of Methanol
			6.3 ^e	NO data	-	113	
			No peak		13.0	100	
[18]	300	7.0	3.4	No data -	-	103	Decolorization of rhodamine 6G
			4.8		-	107	
	200		No peak	3.9	5.6	59	
	300		No peak	4.0	4.9	55	
This	400	6.5	Broad	4.0	4.9	53	Decomposition of acetic acid
	500		Broad	4.0	4.9	53	
	600	600	Broad	4.1	4.3	54	

^aThe crystallite size of the anatase particle derived from the 101 diffraction of anatase from XRD pattern using Scherrer equation. ^bBand gap energy of the anatase particle was derived from the UV-Vis absorption spectra by Tauc plat and the linear interpolation. ^cThe size of the anatase particles was derived from the shift of the band gab energy from band gap energy of a bulk anatase particle (3.2 eV). ^dThe sharpness was defined as the width between the maximum absorption and the absorption edge, derived from UV-Vis absorption spectra.

Ref.	Host	Crystallization temp./°C	BET surface area/m ² g ⁻¹	Pore volume/cm³ g⁻¹	^a Crystallite size/nm	Reaction
	SBA-15 (BJH pore	As-syn	714	0.74	No data	 Decolorization of methylene blue
[19]	diameter of 4.0	500	561	0.55	No data	
	nm)	600	504	0.53	5.0	
		300	556	0.18	3.3	Decolorization of methylene blue, methyl orange, rhodamine B and
[20]	SBA-15 (BJH pore	400	717	0.21	3.7	
[20]	nm)	500	439	0.16	4.1	
		600	263	0.11	4.7	oxidation of phenol
		As-syn	No data	No data	No data	
	Natural zeolite (RIH	300	No data	No data	6.3	 Decomposition of toluene
[21]	pore diameter of 1	400	No data	No data	7.2	
	nm)	500	No data	No data	8.4	
		600	No data	No data	10.2	-
		As-syn	167	0.22	No data	
[22]	Natural zeolite (BJH	300	119	0.23	No data	 Oxidation of SO₂
[22]	nm)	400	167	0.22	No data	
		500	115	0.26	No data	-
		As-syn	219	0.20	No data	_
	Montmolionite (2:1	300	279	0.27	2.5	
[23]	phyllosilicate,	400	243	0.30	4.3	Decolorization of
	stacked plates)	500	216	0.27	5.1	- methylene blue

Table S2. Summary of the crystallite size of the anatase particles prepared in porous supports, the porosity of the hybrids and the photocatalytic reactions.

		600	194	0.26	6.1	
	Kaolinite (1:1 Phyllosilicate, hexagonal plate)	100	65	-	7.0	 Decolorization of methylene blue
[24]		600	34	-	19.0	
		As-syn	439	0.52	-	 Decomposition of acetic acid
		200	452	0.53	5.0	
	SBA-15 (BJH pore	300	466	0.53	5.0	
This work	diameter of 6.5 nm)	400	469	0.54	5.0	
	,	500	475	0.55	5.0	_
		600	476	0.55	4.5	_

^aThe crystallite size of the anatase particle derived from the 101 diffraction of anatase from XRD pattern using Scherrer equation.

References

1. C. Jiang, K. Y. Lee, C. M. Parlett, M. K. Bayazit, C. C. Lau, Q. Ruan, S. J. Moniz, A. F. Lee and J. Tang, *Appl. Catal. A*, 2016, **521**, 133.

R. van Grieken, J. Aguado, M. J. López-Muñoz and J. Marugán, *J. Photochem. Photobio. A*, 2002, 148, 315.

3. C. L. Peza-Ledesma, L. Escamilla-Perea, R. Nava, B. Pawelec and J. L. G. Fierro, *Appl. Catal. A*, 2010, **375**, 37.

T. Shindo, N. Koizumi, K. Hatakeyama and T. Ikeuchi, *Inter. J. Soc. Mater. Eng. Res.*, 2011, **18**, 11.
 M. Besançon, L. Michelin, L. Josien, L. Vidal, K. Assaker, M. Bonne, B. Lebeau and J. L. Blin, *New J. Chem.*, 2016, **40**, 4386.

6. Y. Li, N. Li, J. Tu, X. Li, B. Wang, Y. Chi, D. Liu and D. Yang, *Mater. Res. Bull.*, 2011, 46, 2317.

7. D. R. Sahu, L. Y. Hong, S. C. Wang and J. L. Huang, *Micropor. Mesopor. Mater.*, 2009, **117**, 640.

8. F. Zhang, X. Carrier, J. M. Krafft, Y. Yoshimura and J. Blanchard, New J. Chem., 2010, **34**, 508.

9. W. Wang and M. Song, *Mater. Res. Bull.*, 2006, **41**, 436.

10. L. Zhao and J. Yu, J. Colloid Interface Sci., 2006, 304, 84.

11. J. Yang, J. Zhang, L. Zhu, S. Chen, Y. Zhang, Y. Tang, Y. Zhu and Y. Li, *J. Hazar. Mater.*, 2006, **137**, 952.

12. H. Lachheb, O. Ahmed, A. Houas and J. P. Nogier, J. Photochem. Photobio. A, 2011, 226, 1.

13. A. Mehta, A. Mishra, M. Sharma, S. Singh and S. Basu, J. Nanopart. Res., 2016, 18, 209.

14. Z. Wang, F. Zhang, Y. Yang, B. Xue, J. Cui and N. Guan, *Chem. Mater.*, 2007, **19**, 3286.

15. S. Zhu, D. Zhang, X. Zhang, L. Zhang, X. Ma, Y. Zhang and M. Cai, *Micropor. Mesopor. Mater.*, 2009, **126**, 20.

16. C. Liu, X. Lin, Y. Li, P. Xu, M. Li and F. Chen, *Mater. Res. Bull.*, 2016, **75**, 25.

17. C. Salameh, J. P. Nogier, F. Launay and M. Boutros, *Catal. Today*, 2015, **257**, 35.

18. A. M. Busuioc, V. Meynen, E. Beyers, M. Mertens, P. Cool, N. Bilba and E. F. Vansant, *Appl. Catal. A*, 2006, **312**, 153.

J. Yang, J. Zhang, L. Zhu, S. Chen, Y. Zhang, Y. Tang, Y. Zhu and Y. Li, *J. Hazar. Mater.*, 2006, **137**, 952.

20. C. Liu, X. Lin, Y. Li, P. Xu, M. Li and F. Chen, *Mater. Res. Bull.*, 2016, **75**, 25.

21. S. Ko, P. D. Fleming, M. Joyce and P. Ari-Gur, *Mater. Sci. Eng. B*, 2009, **164**, 135.

22. N. Amini, M. Soleimani and N. Mirghaffari, Environ. Sci. Pollut. Res., 2019, 26, 16877.

23. D. Chen, Q. Zhu, F. Zhou, X. Deng and F. Li, J. Hazard. Mater., 2012, 235, 186.

24. K. M. Kutláková, J. Tokarský, P. Kovář, S. Vojtěšková, A. Kovářová, B. Smetana, J. Kukutschová, P. Čapková and V. Matějka, *J. Hazard. Mater.*, 2011, **188**, 212.