Supplementary Information

Synergies of co-doping in ultra-thin hematite photoanodes for solar water oxidation: In and Ti as representative case

Aadesh P. Singh^{1,2,*}, Camilla Tossi³, Ilkka Tittonen³, Anders Hellman¹, Björn Wickman^{1,*}

¹Division of Chemical Physics, Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden

²Engineered Nanosystems Group, School of Science, Aalto University, P.O. Box 13500, 00076 AALTO, Finland

³Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University, P.O. Box 13500, 00076 AALTO, Finland

Figure S1: (a) STEM images for EDX line scan (b) respective EDX line scan clearly shows the distribution of Fe and In element in cross-section of α -Fe₂O₃ annealed at 500°C (c) EDX spectra reveal that Fe and In are the main elements present within the selected line scan.

Figure S2: XPS survey scan recorded on α -Fe₂O₃ thin films annealed at 350°C and 500°C and Ti doped α -Fe₂O₃ annealed 500°C

Figure S3: Butler plots under dark and 1 Sun illumination for α -Fe₂O₃ thin films annealed at 350°C and 500°C and Ti doped α -Fe₂O₃ annealed at 350 and 500°C under dark and 1 Sun illumination, in which the turn-on potential is defined as the value at which the extrapolation of the linear relationship between (current density)² and applied potential intercepts with (current density)² = 0.

Figure S4: IPCE curves for α -Fe₂O₃ thin films annealed at 350°C (black) and 500°C (red) measured at 1.23V vs. V_{RHE}.

Table S1. Summary of photocurrent density at 1.23 V_{RHE} and 1.50 V_{RHE} and water oxidation onset potential under dark and 1 Sun illumination, donor densities and flat-band potentials calculated for all the four samples

	J _{ph} [µA/cm ²]	J _{ph} [µA/cm ²]	Vonset [VRHE]	Vonset [VRHE]	V_{fb}	Nd
	@1.23V _{RHE}	@1.5V _{RHE}	(in dark)	(in Light)	(V _{RHE})	(cm ⁻³)
α-Fe2O3@350°C	37	315	1.76	1.13	0.55	8.56×10 ¹⁸
Ti/α-Fe ₂ O ₃ @350°C	70	554	1.71	1.10	0.49	9.46×10 ¹⁸
α-Fe ₂ O ₃ @500°C	145	398	1.75	1.09	0.54	9.86×10 ¹⁸
Ti/α-Fe2O3@500°C	290	602	1.71	0.93	0.52	9.97×10 ¹⁸