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Supplementary information

Fig. S1. Digital photos of vacuum-dried GO (a) and SiO2-GOQDs under illumination with white 

(b) and ultraviolet (c) light with λ = 365 nm.

Table S1 – Elemental composition of SiO2-NH2 and SiO2-GOQDs determined from CHN analysis, and 

concentration of immobilised aminopropyl fragment calculated from Eq. 1

Material N,% C,% H,% , 
𝐶𝑁𝐻2

 

mmol/g

SiO2-NH2 1.05 2.89 0.84 0.75

SiO2-GOQDs 1.00 3.22 0.86

a b c
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Fig. S2 Effect of washing on c(Mn) in supernatants (a) and monitoring of electrical conductivity with water 

washing (b)
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Fig. S3 Electrochemical sensibility (a) and relative enhancement of the current (b) on CPE and CPE/SiO2-
GOQDs to the selected analytes.
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Table S2 Analytical characteristics of the different electrodes modified with carbogenic nanomaterials in 

determination of EST, DES, SMZ and TMP

Material Analyte
Linear range, 

μmol L-1

LOD, 

μmol L -1

LOQ. 

μmol L -1

Equation 

(y(nA)vsC(μmol L -1)

Sensitivity, 

nA L μmol-1
Ref.

CPE/SiO2-GOQDs 0.01-0.6 0.009 0.029 y=500*C+4.1 500
This 

work

GCE/CNB/AgNPs 0.2-3 0.16 0.5 n.d. 131 1

GCE/rGO/AgNPs 0.1-3 0.021 y=590*C+590 590 2

GCE/rGO/SbNPs 0.2-1.4 0.0005 y=2.13*C+0.57 2.13 3

GCE/Pt/CNTs

EST

0.5-15 0.62 y=790*C+22040 790 4

CPE/SiO2-GOQDs 0.15-0.5 0.18 0.6 y=270*C+32 270
This 

work

CPE 0.1-15 0.01 0.03 n.d. n.d. 5

GCE 2-100 0.08 y=337*C+264 337 7

GCE/GO/CS 0.015-30 0.003 0.01 y=−69.1*C−1.83 69 8

GCE/rGO/CD

DES

0.01-13 0.004 n.d. n.d. 9

CPE/SiO2-GOQDs 4-20 0.46 1.53 y=19*C+95.90 19
This 

work

CPE/MCM-41 98-327 3.1 y=2.43*C+11352 2.43 10

CPE/CNTs 1.4-119 0.4 1.33 n.d. 24.1 11

SPE/rGO 0.5–50 0.04 0.13 n.d. n.d. 12

MIP/BDD

SMZ

0.1-100 0.024 0.080 y=314.22*C+7.17 314 13

CPE/SiO2-GOQDs 0.7-3.5 0.191 0.63 y=100*C+106 100
This 

work

SPE/CNTs/PBnc 0.1-10 0.06 0.2 y=108.31*C+70.7 108 14

CPE/CNTs/SbNPs

TMP

0.1–0.7 0.031 0.1 y=0.37*C+30 0.37 15

Electrodes: CPE – carbon paste electrode; GCE - glassy carbon electrode; MIP - molecularly imprinted 

polymer; SPE - screen-printed electrode. 

Modifiers: CNB – carbon black nanoballs; AgNPs  - silver nanoparticles; SbNPs - antimony nanoparticles; 

AuNPs - gold nanoparticles; rGO - reduced graphene oxide; CoPc - cobalt phtolocyanine; CS - chitosan; 

CD - β-cyclodextrin; CNTs – carbon nanotubes; BDD - boron-doped diamond; PBnc - Prussian blue 

nanocubes.
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Fig. S4 Relationship between normalised peak currents (I(nA)/C(µmol L-1) on CPE and CPE/SiO2-GOQDs 
(left axis), and relative enhancement of the peak current on modified (I1) and bulk (I0) CPE (right axis), 
versus LogP of the analytes.
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Fig. S5 Topological polar surface area of the selected analytes visualised by ChemDraw Ultra 12.0
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