Electronic Supplementary Material

The aptasensor for label-free detection of thrombin based on turn-on fluorescent DNA-templated Cu/Ag nanoclusters

Baozhu Zhang ^a and Chunying Wei^{*b}

^a College of Chemistry and Chemical Engineering, Jinzhong University, Yuci 030619, Shanxi,

China

^b Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education,

Institute of Molecular Science, Shanxi University, Taiyuan 030006, Shanxi, China

^{*}Corresponding author.

E-mail address: weichuny@sxu.edu.cn (C. Wei)

Oligonucleotids	Sequences (5'- 3')
TBA1	CCCTTAATCCCC <u>TTTTT</u> GGTTGGTGTGGTGG <u>TTTTT</u> CCCTAACTCCC C
TBA2	GGTTGGTGTGGTTGG <u>TTTTT</u> CCCTAACTCCCC

Table S1 Names and sequences of the oligonucleotides.

Table S2 Comparison of different strategies for the detection of thrombin.

Detection methods	LOD	Linear range	References	
Surface plasmon resonance	0.10 nM	0.10-75 nM	34	
Fluorescence	0.18 nM	0.50-20 nM	35	
Fluorescence DNA-Ag NCs	1.0 nM	0.0-50 nM	36	
UV-vis absorbance	3.0 nM	5.0-30.4 nM	37	
Fluorescence	30 pM	0.28-86 nM	9	
Fluorescence	31.3 pM	62.5-187.5 PM	10	
Fluorescence DNA-Cu/Ag NCs	1.6 nM	1.6-8.0 nM	this work	

Table S3 The lifetimes of TBA1-Cu/Ag NCs in the absence and presence of different concentration of thrombin.

Samples	[TB] (nM)	τ_1 (ns)	τ_2 (ns)	τ_3 (ns)	$\tau_{\rm avg}({\rm ns})$	χ^2
TBA1-Cu/Ag	0	0.43 (50%)	2.8(27%)	13 (23%)	3.9	1.090
NCs						
TBA1-Cu/Ag NCs + TB	3.2	0.39 (46%)	2.6 (26%)	12 (28%)	4.1	1.093
	6.4	0.37 (44%)	2.5 (27%)	10 (29%)	3.8	1.100
	8.0	0.36 (53%)	2.5 (25%)	11 (22%)	3.3	1.096

Fig. S1 (A) UV-vis spectra of TBA2-Ag NCs without (a) and with 10 U/L thrombin (b). (B) Fluorescence emission spectra of TBA2-Cu/Ag NCs under different excitation wavelength. $c(DNA) = 3 \mu M$, Tris-HAc (10 mM, pH 7.0)

Fig. S2 The IR spectrum of TBA1-Cu/Ag NCs.

Fig. S3 Stability of Cu/Ag NCs. The changes of fluorescence intensities of TBA1-Cu/Ag NCs at 560 nm (A) and TBA2-Cu/Ag NCs at 575 nm (B) against the increasing time. The error bars represent the standard deviation of three independent measurements. c (DNA) = 1.5 μ M.

Fig. S4 Relative fluorescence intensity (F/F_0) of different DNA-Cu/Ag NCs. F_0 and F are the maximum emission intensity of the DNA-Cu/Ag NCs before and after the addition of 8.0 nM thrombin, respectively. The error bars

represent the standard deviation of three independent measurements.

Fig. S5 Fluorescence intensity of TBA1-Cu/Ag NCs in the presence of 8.0 nM thrombin against the increasing reaction time. The error bars represent the standard deviation of three independent measurements. c(DNA) = 1.5 μ M.

Fig. S6 The fluorescence lifetime curves of TBA1-Cu/Ag NCs (excitation at 405 nm and emission at 560 nm) incubating with the different concentration of Thrombin.