Supplementary Information

Two-Dimensional graphene-HfS₂ van der Waals heterostructure as electrode material for Alkaliion batteries.

Gladys King'ori^{a, b}, Cecil N M Ouma^c, Abhishek K Mishra^d, George O Amolo^b, Nicholas W Makau^a.

Figure S1 Calculated density of states of (a) $3\times3\times1$ Gr supercell, (b) $2\times2\times1$ HfS₂ supercell and (c) Gr-HfS₂ heterostructure system.

Figure S2: Migration pathways of a) Li b) Na and c) K diffusion between the Gr-HfS₂ heterostructure layers. d) and e) are the migration pathways for Li, Na and K diffusion between the bilayers of Gr HfS₂ respectively.

Table S1: Energy barriers (in eV), associated with diffusing adatoms through the various paths shown in Figure S2.

	PATH 1	PATH 2	PATH 3
Li diffusion through GrHfS ₂	0.39	0.22	0.26
Na diffusion through GrHfS ₂	0.46	0.74	0.28
K diffusion through GrHfS ₂	0.06	0.05	0.09
Li diffusion through Gr bilayer	0.39	0.42	
Na diffusion through Gr bilayer	0.26	0.54	
K diffusion through Gr bilayer	0.11	0.13	
Li diffusion through HfS ₂ bilayer	0.10	0.69	
Na diffusion through HfS ₂ bilayer	0.32	0.50	
K diffusion through HfS ₂ bilayer	0.19	0.40	