## Amorphous mesostructured zirconia with high (hydro)thermal stability

Bénédicte Lebeau<sup>1,2</sup>, Issam Naboulsi<sup>3</sup>, Laure Michelin<sup>1,2</sup>, Claire Marichal<sup>1,2</sup>, Séverinne Rigolet<sup>1,2</sup>, Cédric Carteret<sup>4</sup>, Sylvette Brunet<sup>5</sup>, Magali Bonne<sup>1,2</sup>, Jean-Luc Blin<sup>3\*</sup>,

<sup>1</sup>: Université de Haute Alsace (UHA), CNRS, IS2M UMR 7361, F-68100 Mulhouse, France

<sup>2</sup>: Université de Strasbourg, 67000 Strasbourg, France

<sup>3</sup>: Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France

<sup>4</sup>: Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France

<sup>5</sup>: Université de Poitiers, CNRS, IC2MP, UMR 7285, 86073 Poitiers Cedex 9 France.

\* Corresponding authors :
Pr. Jean-Luc Blin
Université de Lorraine
L2CM 7053
Faculté des Sciences et Technologies
BP 70239
F-54506 Vandoeuvre-lès-Nancy cedex, France
Tel. +33 3 83 68 43 70
E-mail: Jean-Luc.Blin@univ-lorraine.fr

Supporting information S1: TG and heat-flow curves of the hybrid mesophase and EtOH-extracted mesostructured  $ZrO_2$ 



**Supporting information S2**:  ${}^{1}H{}^{-13}C$  CPMAS NMR spectra of as-synthesized (A) and dehydrated at 70 °C (B) ZrO<sub>2</sub> hybrid mesophase



Supporting information S3: Raman spectra of Pluronic P123 (A) and  $ZrO_2$  hybrid mesophase (B)



**Supporting information S4**: <sup>1</sup>H MAS NMR spectra of as-synthesized (A) and dehydrated at 70  $^{\circ}$ C (B) ZrO<sub>2</sub> hybrid mesophase



**Supporting information S5**: Raman spectrum of amorphous mesostructured ZrO<sub>2</sub> recovered after surfactant extraction.



**Supporting information S6**: SAXS pattern (A), nitrogen adsorption-desorption isotherm (B) and mesopores size distribution (C) of  $ZrO_2$  after calcination at 480 °C under air atmosphere in a furnace.



**Supporting information S7**: Evolution as a function of the immersion time of the specific surface area ( $\blacksquare$ ) and pore volume ( $\bigcirc$ ) of amorphous ZrO<sub>2</sub> after calcination at 440 °C under air atmosphere in a furnace. Lines are just a guide for the eyes.

