Supporting Information

Synthesis and Biochemical Evaluation of Cephalosporin Analogues Equipped with Chemical Tethers

Lisa M. Miller,*[‡] Reyme Herman,[§] Ivan S. Gyulev,[§] Thomas F. Krauss,[⊥] Gavin H. Thomas,[§] and Anne-Kathrin Duhme-Klair[‡]

[‡]Department of Chemistry, University of York, Heslington, YO10 5DD. [§]Department of Biology, University of York, Heslington, YO10 5DD. [⊥]Department of Physics, University of York, Heslington, YO10 5DD.

*lisa.miller@york.ac.uk

Table of Contents

S1. Compound Synthesis and Characterisation	S-3
S1.1. General Experimental	S-3
S1.2. Materials	S-3
S1.3. Instrumentation	S-3
S1.4. Compound Spectra	S-4
S2. PBP Thermal Shift Assay	S-18
S2.1. PBP3 data	S-18
S2.2. PBP4 data	S-20
S3. MIC/MBC ₅₀ Assay Results	S-21
S3.1. <i>S. aureus</i> MIC curves	S-21
S3.2. <i>E. coli</i> MIC curves	S-25
S3.3. MBC ₅₀ data	S-30
S4. Kinetics Assay Results	S-31

S1. Compound Synthesis and Characterisation.

S1.1. General Experimental

Analytical thin layer chromatography (TLC) was performed with EM Science silica gel 60 F254 aluminium plates. Visualisation was carried out using a UV lamp (254 nm) and by immersion in potassium permanganate (KMnO₄), followed by heating using a heat gun. Organic solutions were concentrated by rotary evaporation at 40-45 °C. Purification of reaction products were generally done by flash column chromatography using Fluka Silica, pore size 60Å, 220–440 mesh, 35–75 µm.

S1.2. Materials

Unless otherwise noted, all purchased materials were used without purification. All standard solvents were purchased from Sigma Aldrich. All standard acids, bases, and drying agents were purchased from Fisher Scientific. *N*-Hydroxy succinimide (NHS) and *N*, *N*-diisopropylethylamine (DIPEA) were purchased from Acros Organics. Cephalexin monohydrate and Boc₂O were purchased from Fluorochem. Pentynoic acid, *N*,*N*'-dicyclohexylcarbodiimide (DCC), lipoic acid, glutaric anhydride, oxalyl chloride, and Et₃N were purchased from Sigma Aldrich. DMAP was purchased from TCI.

S1.3. Instrumentation

¹H and ¹³C NMR spectra were recorded on a Jeol ECS 400 (400 MHz for ¹H, 101 MHz for ¹³C) at ambient temperature. Chemical shifts are reported relative to residual solvent peaks and coupling constants (*J*) are given in Hertz. High-resolution ESI mass spectra were recorded on a Bruker microTOF electrospray mass spectrometer. Infrared (IR) spectra were recorded on a PerkinElmer Spectrum Two (ATIR). Analytical HPLC measurements were performed on a Shimadzu HPLC system (Prominence) equipped with a LC-20AD pump, SIL-20A autosampler, DGU-20AS degasser, CTO-20AC column oven, CBM-20A communication bus module and SPD-M20A diode array detector using a SunFire C18 column (Waters, 4.6 x 150 mm, 5 µm). Eluent gradient: 5-95% MeCN/H₂O with a 0.1% formic acid modifier, over 15 minutes.

S1.4. Compound Spectra

Compound 4, (6R,7R)-3-methyl-8-oxo-7-[(2R)-2-(pent-4-ynamido)-2-phenylacetamido]-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

HPLC: Compound 4

Compound 5, (6R,7R)-7-[(2R)-2-[5-(1,2-dithiolan-3-yl)pentanamido]-2-phenylacetamido]-3-methyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

HPLC: Compound 5

Compound 6, (6R,7R)-7-[(2R)-2-{5-[(2,5-dioxopyrrolidin-1-yl)oxy]-5oxopentanamido}-2-phenylacetamido]-3-methyl-8-oxo-5-thia-1azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

¹³C NMR: Compound 6

QNMR: Compound 6, ¹H NMR in DMSO-d₆ with maleic acid reference

QNMR purity determination:

Reference: Maleic acid, MW 116, mass 2.4 mg, δ 7.23 (s, 2H)

Sample: Compound 6, MW 558, mass 4.1 mg, average of three peaks = 0.32 (δ 5.63 (d, 0.31H), 5.58 (dd, 0.33H), 4.91 (d, 0.32H))

%purity = (measured mmol/predicted mmol) x 100

= (0.0066/0.0073) x 100

= 90.4%

Compound 7, (6R,7R)-7-[(2R)-2-(4-carboxybutanamido)-2-phenylacetamido]-3-methyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

HPLC: Compound 7

Compound 8, (6R,7R)-7-[(2R)-2-acetamido-2-phenylacetamido]-3-methyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

Compound 9, (6R,7R)-7-[(2R)-2-{[(tert-butoxy)carbonyl]amino}-2-phenylacetamido]-3-methyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

HPLC: Compound 9

HPLC: Compound 10

Compound 18, 2,5-dioxopyrrolidin-1-yl 5-(1,2-dithiolan-3-yl)pentanoate

(6R,7R)-7-[(2R)-2-(5-{[(tert-Compound 23, butoxy)carbonyl]amino}pentanamido)-2-phenylacetamido]-3-methyl-8-oxo-5thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

¹³C NMR: Compound 23

S2. PBP Thermal Shift Assay

S2.1. PBP3 Data

Table 31. Thermal similarsay results with FDF 3					
Sample	Tm 1/°C	Tm 2/°C	Tm 3/°C	Average Tm/°C	
PBP3	55.2570138	55.2570138	55.2570138	55.2570138	
					∆Tm/°C,
	∆Tm 1/°C	∆Tm 2/°C	∆Tm 3/°C	Average ∆Tm/°C	±s.d.
Compound 1	+1.8065	+1.8065	+1.2076	+1.6069	+1.61, ±0.35
Compound 2	+4.7994	+4.7994	+4.5585	+4.7191	+4.51, ±0.14
Compound 3	+3.5988	+3.5988	+1.8065	+3.0014	+3.00, ±1.03
Compound 4	+3.009	+3.5988	+2.4077	+3.0052	+3.01, ±0.60
Compound 5	+3.009	+3.009	+3.009	+3.009	+3.01, ±0
Compound 6	+3.5988	+3.009	+3.009	+3.2056	+3.21, ±0.34
Compound 7	+3.5988	+3.5988	+3.5988	+3.5988	+3.60, ±0
Compound 8	+3.009	+3.009	+3.009	+3.009	+3.01, ±0
Compound 9	+1.8065	+1.8065	+1.2076	+1.6069	+1.61, ±0.34
Compound 10	+3.009	+2.4077	+3.009	+2.8086	+2.81, ±0.35
Compound 11	+3.5988	+3.009	+3.5988	+3.4022	+3.40, ±0.34
Compound 12	+4.2194	+4.816	+4.2194	+4.4182	+4.42, ±0.34

Table S1: Thermal shift assay results with PBP3

Relative Tm values vs. ligand equivalents for compounds **1-12** with PBP3. Relative Tm values were calculated as a ratio relative to the highest Tm value and plotted against the equivalents of ligand used. Values are an average of three runs.

S2.2. PBP4 Data

Sample	Tm 1/°C	Tm 2/°C	Tm 3/°C	Average Tm/°C	
PBP4	54.24049	54.2415771	54.4431267	54.3083979	
					∆Tm/°C,
	∆Tm 1/°C	∆Tm 2/°C	∆Tm 3/°C	Average ∆Tm/°C	±s.d.
Compound 1	-1.0801036	-0.8823153	-0.6821696	-0.8815295	-0.88, ±0.20
Compound 2	-2.3243078	-2.1986516	-1.33793	-1.9536298	-1.95, ±0.54
Compound 3	-0.2168897	-0.0951398	-0.82245	-0.3781598	-0.38, ±0.39
Compound 4	-0.8124097	-0.6918615	-1.0553525	-0.8532079	-0.85, ±0.19
Compound 5	-0.0615412	-1.2663256	-0.0632731	-0.4637133	-0.46, ±0.70
Compound 6	-0.8645109	-0.5057653	-0.7545522	-0.7082761	-0.71, ±0.18
Compound 7	-0.2618154	-0.5028661	-0.502477	-0.4223862	-0.42, ±0.14
Compound 8	0.24304072	-0.4932111	-0.4936002	-0.2479235	-0.25, ±0.43
Compound 9	-0.7306188	-0.7299665	-0.9672788	-0.809288	-0.81, ±0.14
Compound 10	0.25836054	-0.4749921	0.13492076	-0.0272369	-0.03, ±0.39
Compound 11	-0.7074216	-0.5856679	-0.9453786	-0.7461561	-0.75, ±0.18
Compound 12	-0.6960424	-0.5755933	-0.8143819	-0.6953392	-0.70, ±0.12

Table S3: Thermal shift assay results with PBP4

S3. MIC Assay Results

S3.1. S. aureus MIC curves

21

S3.2. E. coli MIC curves

S3.3. MBC₅₀ data

Protocol: After 16 h of incubation with compounds at 37 °C as per the MIC assay protocol, a 1 μ L aliquot was taken from wells with no visible bacterial growth and transferred to the surface of the agar plate. Plates were incubated for a further 24 h at 37 °C. MBC₅₀ values were the lowest concentration of compound required to kill 50%, plates with no antibiotics were used as references for 100% growth. Experiments were performed in triplicate.

Compound	MBC ₅₀ S. aureus	MBC ₅₀ E. coli
	(NCTC 6571)	(BW25113)
1	400 μM	>400 μM ^a
2	200 μM	>400 μM ^a
3	200 μM	>400 μM ^a
4	50 μM	>400 μM ^a
5	50 μM	>400 μM ^a
6	200 μM	>400 μM ^a
7	200 μM	>400 μM ^a
8	200 μM	>400 μM ^a
9	50 μM	>400 μM ^a
10	50 μM	>400 μM ^a
11	10 µM	400 μM
12	100 μM	100 μM

^a MBC₅₀ not determined in concentration range tested (up to 400 μ M).

S4. UV Kinetics Assay

S4.1. Compound 1

Compound 1 – TEM-1		
[E] 500 nM		
Kcat/K _M (mM ⁻¹ s ⁻¹)	0.530	
Relative k _{cat} /K _M	1.0	

Compound 1 – CTX-M-15		
[E] 100 nM		
Kcat/K _M (mM ⁻¹ s ⁻¹)	2.922	
Relative k _{cat} /K _M	1.0	

Compound 1 – AmpC		
[E]	50 nM	
Kcat/K _M (mM ⁻¹ s ⁻¹)	0.270	
Relative k _{cat} /K _M	1.0	

Compound 1 – NDM-1		
[E] 50 nM		
Kcat/K _M (mM ⁻¹ s ⁻¹)	1.721	
Relative k _{cat} /K _M	1.0	

S4.2. Compound 2

Compound 2 – TEM-1		
[E]	500 nM	
Kcat/K _M (mM ⁻¹ s ⁻¹)	0.118	
Relative k _{cat} /K _M	0.2	

Compound 2 – CTX-M-15		
[E] 100 nM		
Kcat/K _M (mM ⁻¹ s ⁻¹)	0.581	
Relative k _{cat} /K _M	0.2	

Compound 2 – AmpC		
[E]	50 nM	
Kcat/K _M (mM ⁻¹ s ⁻¹)	0.209	
Relative k _{cat} /K _M	0.7	

Compound 2 – NDM-1		
[E] 50 nM		
Kcat/K _M (mM ⁻¹ s ⁻¹)	1.969	
Relative k _{cat} /K _M	1.1	

S4.3. Compound 3

[S] (mM)

Compound 3 – TEM-1	
[E]	100 nM
Kcat/K _M (mM ⁻¹ s ⁻¹)	0.800
Relative k _{cat} /K _M	1.5

Compound 3 – CTX-M-15	
[E]	100 nM
Kcat/K _M (mM ⁻¹ s ⁻¹)	0.941
Relative k _{cat} /K _M	0.3

Compound 3 – AmpC	
[E]	50 nM
Kcat/K _M (mM ⁻¹ s ⁻¹)	1.673
Relative k _{cat} /K _M	5.7

Compound 3 – NDM-1	
[E]	50 nM
Kcat/K _M (mM ⁻¹ s ⁻¹)	2.981
Relative k _{cat} /K _M	1.7

S4.4. Compound 4

Compound 4 – TEM-1	
[E]	500 nM
Kcat/K _M (mM ⁻¹ s ⁻¹)	0.623
Relative k _{cat} /K _M	1.2

Compound 4 – CTX-M-15	
[E]	100 nM
Kcat/K _M (mM ⁻¹ s ⁻¹)	0.912
Relative k _{cat} /K _M	0.3

Compound 4 – AmpC	
[E]	50 nM
Kcat/K _M (mM ⁻¹ s ⁻¹)	5.182
Relative k _{cat} /K _M	17.3

Compound 4 – NDM-1	
[E]	50 nM
Kcat/K _M (mM ⁻¹ s ⁻¹)	8.391
Relative k _{cat} /K _M	4.9

S4.5. Compound 5

Compound 5 – TEM-1	
[E]	500 nM
Kcat/K _M (mM ⁻¹ s ⁻¹)	0.338
Relative k _{cat} /K _M	0.6

Compound 5 – CTX-M-15	
[E]	100 nM
Kcat/K _M (mM ⁻¹ s ⁻¹)	2.216
Relative k _{cat} /K _M	0.8

Compound 5 – AmpC	
[E]	50 nM
Kcat/K _M (mM ⁻¹ s ⁻¹)	3.355
Relative k _{cat} /K _M	11.3

Compound 5 – NDM-1	
[E]	50 nM
Kcat/K _M (mM ⁻¹ s ⁻¹)	6.323
Relative k _{cat} /K _M	3.7

S4.6. Compound 6

[S] (mM)

Compound 6 – TEM-1			
[E] 500 nM			
Kcat/K _M (mM ⁻¹ s ⁻¹)	0.230		
Relative k _{cat} /K _M	0.4		

Compound 6 – CTX-M-15			
[E] 100 nM			
Kcat/K _M (mM ⁻¹ s ⁻¹)	1.385		
Relative k _{cat} /K _M	0.5		

Compound 6 – AmpC		
[E]	50 nM	
Kcat/K _M (mM ⁻¹ s ⁻¹)	1.301	
Relative k _{cat} /K _M	4.3	

Compound 6 – NDM-1			
[E] 50 nM			
Kcat/K _M (mM ⁻¹ s ⁻¹)	2.038		
Relative k _{cat} /K _M	1.2		

S4.7. Compound 7

Compound 7 – TEM-1			
[E] 100 nM			
Kcat/K _M (mM ⁻¹ s ⁻¹)	1.176		
Relative k _{cat} /K _M	2.2		

Compound 7 – CTX-M-15			
[E] 100 nM			
Kcat/K _M (mM ⁻¹ s ⁻¹)	1.361		
Relative k _{cat} /K _M	0.5		

Compound 7 – AmpC		
[E]	50 nM	
Kcat/K _M (mM ⁻¹ s ⁻¹)	5.830	
Relative k _{cat} /K _M	19.3	

Compound 7 – NDM-1			
[E] 50 nM			
Kcat/K _M (mM ⁻¹ s ⁻¹)	8.969		
Relative k _{cat} /K _M	5.2		

S4.8. Compound 8

Compound 8 – TEM-1			
[E] 500 nM			
Kcat/K _M (mM⁻¹ s⁻¹)	0.963		
Relative k _{cat} /K _M	1.8		

Compound 8 – CTX-M-15			
[E] 100 nM			
Kcat/K _M (mM ⁻¹ s ⁻¹)	3.061		
Relative k _{cat} /K _M	1.0		

.00008					•	
.00006						
.00004				••*	y = 0.000)2x
.00002				$R^2 = 0.99$	43	
0						
	0	0.1	0.2	0.3	0.4	0.5
[S] (mM)						

Compound 8 – AmpC		
[E]	50 nM	
Kcat/K _M (mM ⁻¹ s ⁻¹)	3.432	
Relative k _{cat} /K _M	11.3	

Compound 8 - NDM-1

Compound 8 – NDM-1				
[E] 50 nM				
Kcat/K _M (mM ⁻¹ s ⁻¹)	8.092			
Relative k _{cat} /K _M	4.7			

S4.9. Compound 9

Compound 9 – TEM-1				
[E] 100 nM				
Kcat/K _M (mM ⁻¹ s ⁻¹)	1.357			
Relative k _{cat} /K _M	2.6			

Compound 9 – CTX-M-15			
[E] 100 nM			
Kcat/K _M (mM ⁻¹ s ⁻¹)	0.891		
Relative k _{cat} /K _M	0.3		

Compound 9 – AmpC		
[E]	50 nM	
Kcat/K _M (mM ⁻¹ s ⁻¹)	1.411	
Relative k _{cat} /K _M	4.7	

Compound 9 – NDM-1			
[E] 50 nM			
Kcat/K _M (mM ⁻¹ s ⁻¹)	2.181		
Relative k _{cat} /K _M	1.3		

S4.10. Compound 10

Compound 10 – TEM-1		
[E]	500 nM	
Kcat/K _M (mM ⁻¹ s ⁻¹)	0.185	
Relative k _{cat} /K _M	0.3	

Compound 10 – CTX-M-15			
[E] 100 nM			
Kcat/K _M (mM ⁻¹ s ⁻¹)	1.783		
Relative k _{cat} /K _M	0.6		

0005						
00004						
00003						
0002					y = 0.00	002x
0001					$R^2 = 0.977$	
0						
(0	0.05	0.1	0.15	0.2	0.25
[S] (mM)						

Compound 10 – AmpC		
[E]	50 nM	
Kcat/K _M (mM ⁻¹ s ⁻¹)	4.007	
Relative k _{cat} /K _M	13.3	

Compound 10 - NDM-1

Compound 10 – NDM-1			
[E] 50 nM			
Kcat/K _M (mM ⁻¹ s ⁻¹)	6.031		
Relative k _{cat} /K _M	3.5		