Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

.

Figure captions for supplementary information

Fig. SI 1	CH ₄ (a) and CO yield (b) of TiO ₂ and 10wt%Ni-Ce _x Ti _{1-x} O ₂ (x = 0, 0.003, 0.05, 0.10 and 0.15) catalysts
Fig. SI 2	CO_2 conversion (a), CH_4 yield (b) and CO yield (c) of NiO, CeO_2 , TiO_2 and $10wt\%Ni-Ce_{0.003}Ti_{0.997}O_2$.
Fig. SI 3	Relationship between energy edge shift of metal compounds from XANES spectra and the oxidation states of metals; Ni oxidation state for fresh, pretreated and used $10wt\%$ Ni-TiO ₂ (a) and $10wt\%$ Ni-Ce _{0.05} Ti _{0.95} O ₂ (b) and the oxidation state of Ce for fresh, pretreated and used $10wt\%$ Ni-Ce _{0.05} Ti _{0.95} O ₂ (c).
Fig. SI 4	Relationship between edge energy shift of Ni compounds and the oxidation states of Ni for fresh and pretreated $10wt\%$ Ni-Ce _{0.003} Ti _{0.997} O ₂ and $10wt\%$ Ni-Ce _{0.003} Ti _{0.997} O ₂ at reaction temperature of 350 and 550 °C.

Fig. SI 1

Fig. SI 2

Fig. SI 3

Fig. SI 4