Interzeolite conversion of micronsized FAU to nanosized CHA zeolite free of organic structure directing agent with high a CO₂ capacity

Kristoffer H. Møller^{1,2}, Maxime Debost², Louwanda Lakiss², Søren Kegnæs^{1*}, Svetlana Mintova^{2*}

'Technical University of Denmark, Department of Chemistry, Kemitorvet 207, 2800 Kongens Lyngby, Denmark

²ENSICAEN, Laboratoire Catalyse & Spectrochimie, 6 Boulevard Maréchal Juin, 14050 Caen Cedex 4, France

Supporting information

Entry	Name	FAU	H ₂ O/Si	K/Si	Na/Si	Time	Phase	Yield ^a
#		source				/ h		
1	CHA(1.9)	CBV400	40	0.76	0.25	96	CHA*	113%
		CBV400					CHA + minor	
2		02.100	40	0.51	0.51	96	EALL	
							ГAU	
3		CBV720	30	0.5	-	168	Amorphous	
							÷	
4	CHA(2 3)	CBV720	30	1	-	168	CHA**	24%
Т	(2.5)	CD 7720	50	1		100		21/0
-	CIIA(2.3)	CD V /20	50	1	-	100		27/0

Table S1: List of conditions for selected synthesis samples

^aYield calculated by (mass product)/(mass starting zeolite) *Minor impurity of LTA or GME **Minor impurity of LTL

ICP analysis

Table S2: ICP results for CHA zeolite samples

Sample	Si/Al	Na/Al	K/Al
CHA(1.9)	1.9	0.06	0.93
CHA(2.3)	2.3	0.01	0.97

SEM images

Figure S1: SEM images of (A) FAU(15), (B) CHA(2.3), (C) FAU(2.6), and (D) CHA(1.9) zeolite samples

Figure S2: SEM image of CHA(2.3) zeolite

Figure S3: SEM image of CHA(1.9) zeolite

TEM images

Figure S4: TEM image of CHA(1.9)

Figure S5: TEM image of CHA(2.3)

Nitrogen physisorption of FAU(2.6), FAU(15), CHA(1.9), and CHA(2.3) zeolite samples

Figure S6: Nitrogen physisorption isotherm of FAU(2.6) zeolite at 77K

Figure S7: Nitrogen physisorption isotherm of FAU(15) zeolite at 77K

Figure 8: Nitrogen physisorption of CHA(1.9) at 77 K

Figure S9: Nitrogen physisorption of CHA(2.3) at 77 K

Sample	$V_{total} (cm^3/g)^a$	V _{micropore} (cm ³ /g) ^b	$S_{BET} (m^2/g)^c$	$S_{ext} (m^2/g)^{b,c}$
FAU(2.6)	0.49	0.280	695	140
FAU(15)	0.36	0.280	606	62
CHA(1.9)	0.07	0.004	43	33
CHA(2.3)	0.39	0.045	251	162

Table S3. Calculated porosity of FAU and CHA samples by $N_{\rm 2}$ physisorption at 77 K

^a Single point adsorption ^b Determined by the t-plot method ^c Determined by the Brunauer-Emmett-Teller method

CO₂ FTIR spectroscopic study

Figure S10. IR spectra of CO₂ adsorbed on CHA(2.3) in the region of 3820-3510 cm⁻¹

Figure S11. IR spectra of pulsed CO₂ adsorbed on CHA(1.9) in the region of 2000-1250 cm⁻¹

Figure S12. IR spectra of pulsed CO₂ adsorbed on CHA(1.9) in the region of 2500-2200 cm⁻¹

Figure S13. IR spectra of pulsed CO₂ adsorbed on CHA(1.9) in the region of 3800-3500 cm⁻¹

Figure S14: IR spectra of pulsed CO₂ adsorbed on CHA(2.3) and after desorption at 10⁻⁵ torr

Figure S15. IR spectra of CO adsorbed on CHA(1.9) at 77 K.