Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supplemental Information

Salt Bridges Govern the Structural Heterogeneity of Heme Protein Interactions and Porphyrin Networks: Microperoxidase-11

J. Porter, a K. Jeanne Dit Fouque, J. Miksovskaa, b and F. Fernandez-Lima*a, b

Corresponding Author

fernandf@fiu.edu

Table of Contents:

Figure S1. TIMS profiles of MP-11 triply-charged monomers at pH 3.1 as a function of adducts, trapping time and collisional activation.

Figure S2. TIMS profiles of MP-11 [M]⁺, $[M+H]^{2+}$, $[2M]^{2+}$ and $[2M+H]^{3+}$ ions at pH 6.6, 4.5 and 3.1 as a function of trapping time.

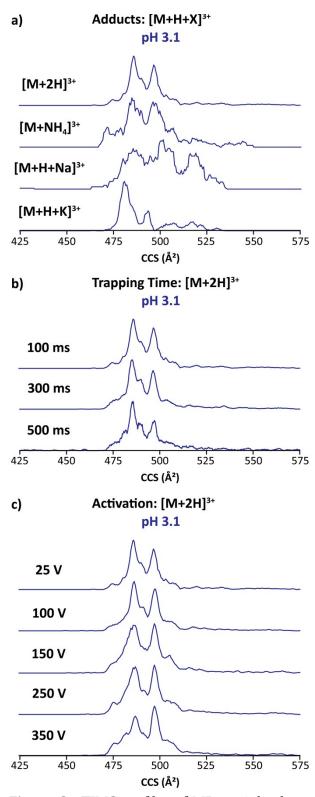
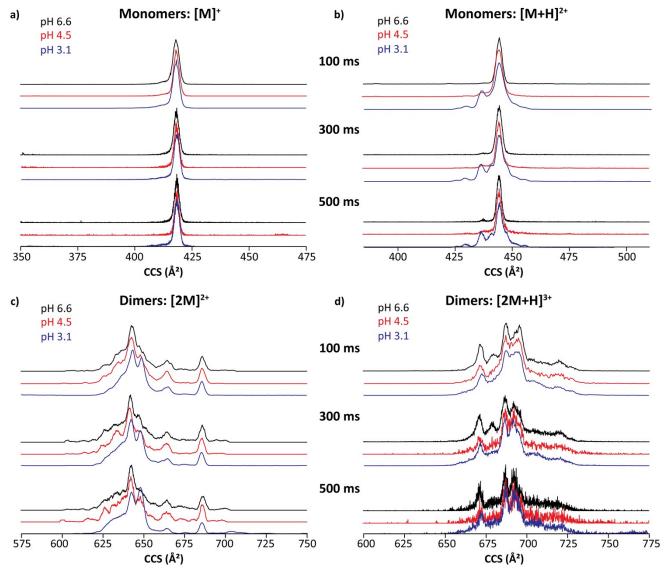
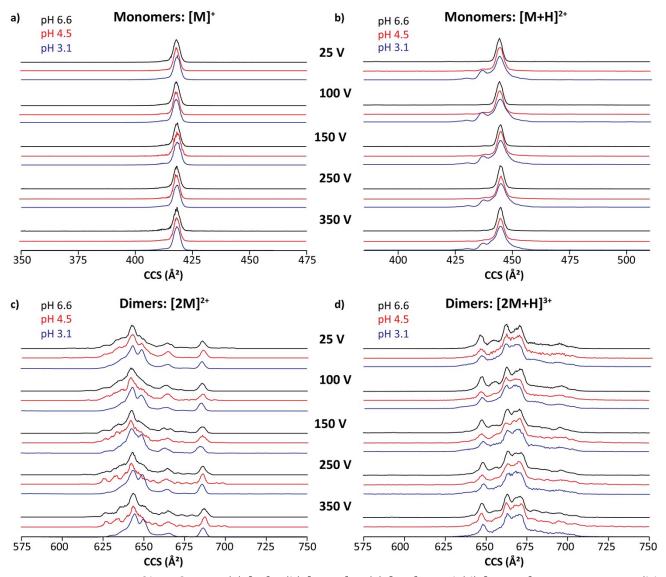
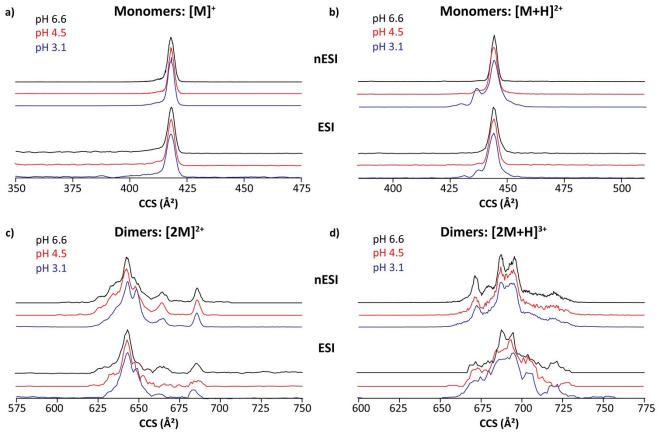

Figure S3. TIMS profiles of MP-11 [M]⁺, $[M+H]^{2+}$, $[2M]^{2+}$ and $[2M+H]^{3+}$ ions at pH 6.6, 4.5 and 3.1 as a function of collisional activation.

Figure S4. TIMS profiles of MP-11 [M]⁺, $[M+H]^{2+}$, $[2M]^{2+}$ and $[2M+H]^{3+}$ ions at pH 6.6, 4.5 and 3.1 as a function of the ionization process.


Figure S5. MS spectra of the $[2M+H]^{3+}$ as a function of the collision energy and plots representing the relative abundances of the $[2M+X]^{3+}$ ions as a function of collision energy.

[†] Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States.


[‡] Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States.


Figure S1. TIMS profiles of MP-11 triply-charged monomers at pH $_{3.1}$ (blue traces) as a function of (a) adducts $[M+H+X]^{_{3+}}$, (b) trapping time and (c) collisional activation.

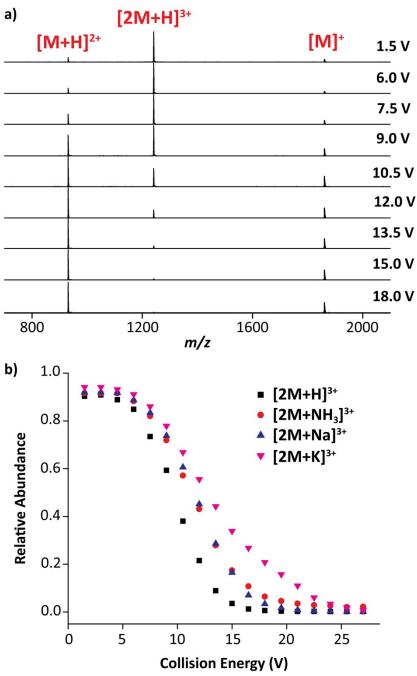

Figure S2. TIMS profiles of MP-11 (a) $[M]^+$, (b) $[M+H]^{2+}$, (c) $[2M]^{2+}$ and (d) $[2M+H]^{3+}$ ions at pH 6.6 (black traces), 4.5 (red traces) and 3.1 (blue traces) as a function of trapping time.

Figure S3. TIMS profiles of MP-11 (a) $[M]^+$, (b) $[M+H]^{2+}$, (c) $[2M]^{2+}$ and (d) $[2M+H]^{3+}$ ions at pH 6.6 (black traces), 4.5 (red traces) and 3.1 (blue traces) as a function of collisional activation.

Figure S4. TIMS profiles of MP-11 (a) $[M]^+$, (b) $[M+H]^{2+}$, (c) $[2M]^{2+}$ and (d) $[2M+H]^{3+}$ ions at pH 6.6 (black traces), 4.5 (red traces) and 3.1 (blue traces) as a function of the ionization process (nESI vs ESI).

Figure S5. (a) MS spectra of the $[2M+H]^{3+}$ as a function of the collision energy and (b) plots representing the relative abundances of the $[2M+X]^{3+}$ ions as a function of collision energy.