Supporting Information

P-stereocontrolled synthesis of oligo(nucleoside N3'→O5' phosphoramidothioate)s – opportunities and limitations.

Ewa Radzikowska^{a,*}, Renata Kaczmarek^a, Dariusz Korczyński^a, Agnieszka Krakowiak^a, Barbara Mikołajczyk^a, Janina Baraniak^a, Piotr Guga^a, Kraig A. Wheeler^b, Tomasz Pawlak^a, and Barbara Nawrot^a

- a) Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112.
 90-363 Łódź, Poland.
- b) Whitworth University, Department of Chemistry, 300 W. Hawthorne Rd., Spokane, WA, 99251 USA.

Table of Content

ata set S1. 5'- <i>O</i> -DMT- <i>N</i> 6-benzoyl-3'-amino-2',3'-dideoxy-adenosine-3'- <i>N-</i> (2-thio-1,3,2- athiaphospholane) (4A)	3
Figure S.1.1. ¹ H NMR spectrum of 5'- <i>O</i> -DMT- <i>N</i> 6-benzoyl-3'-amino-2',3'-dideoxy- adenosine-3'- <i>N</i> -(2-thio-1,3,2-oxathiaphospholane) (4A)	4
Figure S.1.2. ¹³ C NMR spectrum of 5'- <i>O</i> -DMT- <i>N</i> 6-benzoyl-3'-amino-2',3'-dideoxy- adenosine-3'- <i>N</i> -(2-thio-1,3,2-oxathiaphospholane) (4A)	5
Figure S1.3. ³¹ P NMR spectra of the fractions containing P-epimers of 5'-O-DMT- <i>N</i> 6- benzoyl-3'-amino-2',3'-dideoxy-adenosine-3'- <i>N</i> -(2-thio-1,3,2-oxathiaphospholane): " <i>Fast</i> 4Af (an upper panel) and " <i>Slow</i> " 4As + " <i>Fast</i> " 4Af 2:1 (a lower panel)	" 6
ata Set S2. 5'-O-DMT- <i>N</i> 2-isobutyryl-3'-amino-2',3'-dideoxy-guanosine-3'- <i>N</i> -(2-thio-4,4- ntamethylene-1,3,2-oxathiaphospholane) (6G)	7
Figure S2.1. ¹ H NMR spectrum of 5'- <i>O</i> -DMT- <i>N</i> 2-isobutyryl-3-amino-2',3'-dideoxy- guanosine-3'- <i>N</i> -(2-thio-4,4-pentamethylene-1,3,2-oxathiaphospholane) (6G)	8
Figure S2.2. ¹³ C NMR spectrum of 5'- <i>O</i> -DMT- <i>N</i> 2-isobutyryl-3'-amino-2',3'-dideoxy- guanosine-3'- <i>N</i> -(2-thio-4,4-pentamethylene-1,3,2-oxathiaphospholane)) (6G)	9
Figure S2.3. ³¹ P NMR spectra of 5'- <i>O</i> -DMT- <i>N</i> 2-isobutyryl-3'-amino-2',3'-dideoxy- guanosine-3'- <i>N</i> -(2-thio-4,4-pentamethylene-1,3,2-oxathiaphospholane)) <i>"Fast</i> " 6Gf (uppe panel) and <i>"Slow</i> " 6Gs (lower panel)	ər 10
ata set S3. 5'- <i>O</i> -DMT- <i>N</i> ⁴ -benzoyl-3'-amino-2',3'-dideoxy-cytidine-3'- <i>N</i> -(2-thio-4,4-dimethy 3,2-oxathiaphospholane) (5C)	/ - 11
Figure S3.1. ¹ H NMR spectrum of 5'- <i>O</i> -DMT- <i>N</i> 4-benzoyl-3'-amino-2',3'-dideoxy-cytidine- <i>N</i> -(2-thio-4,4-dimethyl-1,3,2-oxathiaphospholane) (5C)	.3'- 12
Figure S3.2. ¹³ C NMR spectrum of 5'- <i>O</i> -DMT- <i>N</i> 4-benzoyl-3'-amino-2',3'-dideoxy-cytidine 3'- <i>N</i> -(2-thio-4,4-dimethyl-1,3,2-oxathiaphospholane) (5C)	;- 13

Figure S3.3. ³¹ P NMR spectra of 5'-O-DMT- <i>N</i> 4-benzoyl-3'-amino-2',3'-dideoxy-cytidine-3'- <i>N</i> -(2-thio-4,4-dimethyl-1,3,2-oxathiaphospholane) " <i>Fast</i> " 5Cf (an upper panel) and " <i>Slow</i> " 5Cs (a lower panel)
Data Set S4. 5'-O-DMT-3'-amino-3'-deoxy-thymidine-3'- <i>N</i> -(2-thio-4,4-dimethyl-1,3,2- oxathiaphospholane) (5T)
Figure S4.1. ¹ H NMR spectrum of 5'-O-DMT-3'-amino-3'-deoxy-thymidine-3'- <i>N</i> -(2-thio-4,4- dimethyl-1,3,2-oxathiaphospholane) (5T)16
Figure S4.2. ¹³ C NMR spectrum of 5'-O-DMT-3'-amino-3'-deoxy-thymidine-3'- <i>N</i> -(2-thio-4,4- dimethyl-1,3,2-oxathiaphospholane) (5T)
Figure S4.3. ³¹ P NMR spectra of 5'-O-DMT-3'-amino-3'-deoxy-thymidine-3'- <i>N</i> -(2-thio-4,4- dimethyl-1,3,2-oxathiaphospholane): <i>"Fast</i> " 5Tf (an upper panel) and <i>"Slow</i> " 5Ts (a lower panel)
Figure S5. ³¹ P NMR spectra recorded after synthesis of 5'-O-DMT- <i>N</i> 6-benzoyl-3'-amino-2',3'- dideoxy-adenosine-3'- <i>N</i> -(2-thio-1,3,2-oxathiaphospholane)
Figure S6.1. A ³¹ P NMR spectrum of ^{DMT} dG ^{iBu} _{NPSMe} T _{OAc} amidodiester (10f)
Figure S6.2. A ¹ H NMR spectrum of ^{DMT} dG ^{iBu} _{NPSMe} T _{OAc} amidodiester (10 f)
Figure S6.3. A ¹³ C NMR spectrum of ^{DMT} dG ^{iBu} _{NPSMe} T _{OAc} amidodiester (10f)
Figure S7. The structure of ^{DMT} dG ^{iBu} _{NPSMe} T _{OAc} amidodiester (10f)
Figure S8. Analysis of 21 obtained from 5Tf . Left: a ³¹ P NMR spectrum; right : a MALDI-TOF MS spectrum. 24
Figure S9. A MALDI-TOF MS spectrum recorded for ${}^{DMT}T_{PO}(T_{PO})_4(T_{NPS})_3T$ 25
Scheme S1. Solid phase synthesis of chimeric NPS/PO oligomer ${}^{DMT}T_{PO}(T_{PO})_4(T_{NPS})_3T$ 26
Table S1. Isolated yield, HR MS or FAB MS (a negative ions mode), and ³¹ P NMR data forunresolved monomers 4-6.27
Table S2. Experimental details of crystallographic analysis. 28

Data set S1. 5'-O-DMT-*N*6-benzoyl-3'-amino-2',3'-dideoxy-adenosine-3'-*N*-(2-thio-1,3,2-oxathiaphospholane) (**4A**).

A). HRMS (TOF MS ES+) m/z for $C_{40}H_{40}N_6O_6S_2P$ calculated m/z: 795.2188, found m/z: 795.2191 [M+H]⁺ and 817.2008 [M+Na]⁺.

Page 1

6.86e+006

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -50.0, max = 80.0 Element prediction: Off Number of isotope peaks used for i-FIT = 5

Monoisotopic Mass, Even Electron Ions 669 formula(e) evaluated with 8 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-43 H: 0-45 N: 0-8 O: 0-8 S: 0-2 P: 0-2 1902018_RK_805A 16 (0.177) Cm (14:19) TOF MS ES+

100-						817.2008					
-			795	2191							
% 0 754.1492	760.8026	774.9857	795.1739	796.222 797.22 79	20 206 9.2208817.1	818.2 819 468	2037 .2025 20.2026 ^{833.}	1745	851.16268	59.1415 ⁸⁶³	.2435
	760 77	0 780	790	800	810	820	830	840	850	860	870
Minimum: Maximum:		15.0	5.0 8	-50.0 30.0							
Mass	Calc. Ma	ss mDa	PPM I	OBE	i-FIT	Norm	Conf(%)	Formula			
795.2191	795.2188 795.2185 795.2205 795.2172 795.2210 795.2210 795.2218 795.2218 795.2155	$\begin{array}{c} 0.3 \\ 0.6 \\ -1.4 \\ 1.9 \\ -1.9 \\ 2.0 \\ -2.7 \\ 3.6 \end{array}$	$\begin{array}{c} 0.4 \\ 0.8 \\ -1.8 \\ 2.4 \\ -2.4 \\ 2.5 \\ -3.4 \\ 4.5 \end{array}$	24.5 29.5 19.5 29.5 25.5 24.5 24.5 29.5	1729.5 1737.0 1728.3 1732.8 1749.6 1736.9 1728.7 1736.7	1.894 9.431 0.678 5.226 22.055 9.280 1.090 9.081	15.05 0.01 50.77 0.54 0.00 0.01 33.62 0.01	C40 H40 N C42 H37 N C38 H45 N C42 H35 N C38 H37 N C41 H41 N C39 H41 N C43 H36 N	6 06 S2 3 8 03 S P 4 07 S2 3 8 05 S2 8 08 P2 4 07 S P 8 03 S2 3 6 06 S P	2 2 2 2 2 2 2	

B) ¹H NMR (CDCl₃, δ, ppm): 8.66 (d, *J*=11.4 Hz, 1H, H-2), 8.19 (d, *J*=21.0 Hz, 1H, H-8), 7.95 (br.d, *J*=7.6 Hz, 2H, Ph), 7.50-7.45 (m, 1H, Ph), 7.41-7.35 (m, 2H, Ph), 7.33-7.27 (m, 2H, Ph), 7.22-7.11 (m, 7H, Ph), 7.10-7.05 (m, 1H, Ph), 6.68 (d, *J*=8.8 Hz, 3H, Ph), 6.36-6.31 (m, 1H, H-1'), 5.82-5.73 (m, 1H, H-3'), 4.53-4.45 (m, 1H, H-4'), 4.11-4.00 (m, 2H, H-5', H-5"), 3.64 (br.s, 6H, 2xCH₃ from DMT group), 3.62-3.58 (m, 1H, H-2'), 3.46-3.42 (m, 1H, H-2"), 3.36-3.28 (m, 2H, CH₂-OTP), 3.26-3.18 (m, 1H, CH₂-OTP), 3.09-2.95 (m, 1H, CH₂-OTP).

¹³C NMR (CDCl₃, δ, ppm): 158.53; 152.35; 151.18; 151.13; 149.81; 144.59; 144.48; 141.97; 141.78; 136.00; 135.70; 135.67; 135.60; 135.56; 135.50; 135.31; 133.74; 132.76; 130.05; 128.11; 126.92; 123.76; 113.13; 86.58; 86.50; 85.03; 84.98; 84.53; 84.22; 68.68; 68.58; 63.12; 62.56; 55.23; 53.46; 52.83; 39.69; 39.18; 37.24; 37.17.

C) The P-epimers were partially separated into two fractions: the nearly pure "*Fast*"- and "*Slow*"-elutingenriched (**4Af**:**4As**, 1:2). Chromatography on a silica gel 60H column was performed using a $0 \rightarrow 1\%$ gradient of methanol in chloroform with 0.2% addition of pyridine as the eluent.

"*Fast*"-4Af: isolated yield 12%;

³¹P NMR (CDCl₃) δ: 95.92 ppm;

"Slow"-4As: + "Fast"-4Af (2:1) isolated yield 24%;

³¹P NMR (CDCl₃) δ: 95.25 ppm, 96.04 ppm, respectively.

Figure S.1.1. ¹H NMR spectrum of 5'-*O*-DMT-*N*6-benzoyl-3'-amino-2',3'-dideoxy-adenosine-3'-*N*-(2-thio-1,3,2-oxathiaphospholane) (**4A**).

thio-1,3,2-oxathiaphospholane) (**4A**)

Figure S1.3. ³¹P NMR spectra of the fractions containing P-epimers of 5'-O-DMT-*N*6-benzoyl-3'- amino-2',3'-dideoxy-adenosine-3'-*N*-(2-thio-1,3,2-oxathiaphospholane): "*Fast*" **4Af** (an upper panel) and "*Slow*" **4As** + "*Fast*" **4Af** 2:1 (a lower panel).

Data Set S2. 5'-O-DMT-*N*2-isobutyryl-3'-amino-2',3'-dideoxy-guanosine-3'-*N*-(2-thio-4,4-pentamethylene-1,3,2-oxathiaphospholane) (**6G**).

A) HRMS (TOF MS ES+) m/z for $C_{42}H_{50}N_6O_7S_2P$ calculated m/z: 845.2920, found m/z: 845.2920 [M+H]⁺ and 867.2737 [M+Na]⁺.

Elemental	Elemental Composition Report						Page 1			
Single Mas Tolerance = Element pre Number of is	Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -50.0, max = 80.0 Element prediction: Off Number of isotope peaks used for i-FIT = 5									
Monoisotopic Mass, Even Electron lons 551 formula(e) evaluated with 4 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-45 H: 0-50 N: 0-8 O: 0-8 S: 0-2 P: 0-2										
1902018_RK_4 TOF MS ES+	BA 16 (0.177) Cm	(13:17-(33:	72+2:8))							1 45e+007
100		303	3.1393							1.4001
%- - - - - - - - - - - - - - - - - - -	4 152.0626 215.08	363	304.1424 305.145	4 409.164	5_437.1945	581.1089	624.2009	665.0609	845.2920 867 868 845.2457	.2737 .2769
50 100	150 200	250 3	00 350	400	450 500	550	600 650	0 700 750	800 850 90	0 950
Minimum: Maximum:		15.0	5.0	-50.0 80.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula		
845.2920	845.2920 845.2916 845.2903 845.2886	0.0 0.4 1.7 3.4	0.0 0.5 2.0 4.0	21.5 26.5 26.5 26.5	1797.1 1808.2 1800.8 1807.7	0.024 11.102 3.762 10.640	97.67 0.00 2.32 0.00	C42 H50 N6 C44 H47 N8 C44 H45 N8 C45 H46 N6	07 S2 P 04 S P2 06 S2 07 S P	

B) ¹H NMR (CDCl₃, δ, ppm): 11.99 (br.s, 1H, -NH), 11.81 (s, 1H, -NH), 8.27 (d, *J*=6.7 Hz, 1H, N2-H), 7.71 (s, 1H, H-8), 7.08 (d, *J*=7.7 Hz, 2H, Ph), 6.99-6.95 (m, 4H, Ph), 5.89-5.84 (m, 1H, H-1'), 6.85-6.80 (m, 1H, Ph), 6.51-6.44 (m, 4H, Ph), 4.34-4.23 (m, 1H, H3'), 3.89-3.85 (m, 1H, H-4'), 3.72-3.65 (m, 1H, H-5'), 3.61-3.51 (m, 1H, H-5"), 3.38 (s, 3H, CH₃ from DMT group), 3.37 (s, 3H, CH₃ from DMT group), 3.21-3.17 (m, 1H, H-2'), 3.05-3.01 (m, 1H, H-2"), 2.60-2.45 (m, 2H, CH₂-OTP), 2.26-2.17 (m, 1H, CH from *i*-Bu), 1.76-1.70 (m, 1H, CH₂-OTP), 1.53-1.46 (m, 1H, CH₂-OTP), 1.33-1.08 (m, 4H, CH₂-OTP); 1.06—0.97 (m, 2H, CH₂-OTP), 0.96 (s, 3H, CH₃ from *i*-Bu), 0.94 (s, 3H, from *i*-Bu), 0.87-0.77 (m, 2H CH₂-OTP);

¹³C NMR (CDCl₃, δ, ppm): 179.51; 158.50; 155.76; 149.68; 147.87; 144.58; 139.91; 137.67; 136.16; 135.86; 135.62; 135.47; 130.09; 129.24; 128.13; 127.91; 127.82; 127.74; 126.86; 123.84; 121.53; 113.11; 113.05; 86.45; 84.78; 84.71; 83.97; 81.22; 67.95; 63.14; 55.22; 53.35; 39.54; 37.37; 37.13; 36.17; 25.21; 23.82; 23.64; 19.02; 19.00.

C) The P-epimers were separated on a silica gel column using chloroform : methanol (50:1; v/v) mixture (with 0.2% of pyridine) as an eluent.

"Fast"-6Gf: isolated yield 46%;

³¹P NMR (CDCl₃) δ: 96.92 ppm;

"Slow"-6Gs: isolated yield 32%;

³¹P NMR (CDCl₃) δ: 96.94 ppm;

Figure S2.1. ¹H NMR spectrum of 5'-*O*-DMT-*N*2-isobutyryl-3-amino-2',3'-dideoxy-guanosine-3'-*N*-(2-thio-4,4-pentamethylene-1,3,2-oxathiaphospholane) (**6G**).

Figure S2.2. ¹³C NMR spectrum of 5'-O-DMT-*N*2-isobutyryl-3'-amino-2',3'-dideoxy-guanosine-3'-*N*-(2-thio-4,4-pentamethylene-1,3,2-oxathiaphospholane)) (**6G**).

Figure S2.3. ³¹P NMR spectra of 5'-*O*-DMT-*N*2-isobutyryl-3'-amino-2',3'-dideoxy-guanosine-3'-*N*-(2-thio-4,4-pentamethylene-1,3,2-oxathiaphospholane)) "*Fast*" **6Gf** (upper panel) and "*Slow*" **6Gs** (lower panel).

Data set S3. 5'-O-DMT-*N*⁴-benzoyl-3'-amino-2',3'-dideoxy-cytidine-3'-*N*-(2-thio-4,4-dimethyl-1,3,2-oxathiaphospholane) (**5C**).

A). HRMS (TOF MS ES+) m/z for $C_{41}H_{44}N_4O_7S_2P$ calculated m/z: 799.2389, found m/z: 799.2385, $[M+H]^+$ and 821.2198 $[M+Na]^+$.

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -50.0, max = 80.0 Element prediction: Off Number of isotope peaks used for i-FIT = 5

Monoisotopic Mass, Even Electron Ions 323 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-43 H: 0-45 N: 0-5 O: 0-8 S: 0-2 P: 0-2 1902018_RK_843A 13 (0.151) Cm (13:22) TOF MS ES+

B). ¹H NMR (CDCl₃, δ, ppm): 8.40 (d, *J*=8.1 Hz, 1H, H-6), 7.93 (d, *J*=8.1 Hz, 2H, Ph), 7.64-7.44 (m, 5H, H-5, Ph), 7.39-7.29 (m, 6H, Ph), 7.28-7.23 (m, 2H, Ph), 6.94-6.83 (m, 4H, Ph), 6.12-6.04 (m, 1H, H-1'), 4.73-4.59 (m, 1H, H-3'), 4.47-4.29 (m, 1H, H-4'), 4.08-3.92 (m, 2H, CH₂-OTP), 3.76 (br.s, 6H, 2xCH₃ from DMT group), 3.45-3.40 (m, 2H, H-5', H-5"), 2.50-2.39 (m, 2H, H-2', H-2"), 1.54 (s, 3H, CH₃-OTP), 1.46 (s, 3H, CH₃-OTP);

¹³C NMR (CDCl₃, δ, ppm): 162.37; 158.70; 149.74; 144.82; 144.16; 144.11; 136.11; 135.50; 135.26; 135.20; 133.18; 133.08; 130.30; 130.16; 128.96; 127.21; 127.17; 123.82; 113.35; 87.19; 87.09; 86.62; 86.34; 85.29; 85.21; 85.03; 84.97; 78.73; 78.62; 61.34; 61.14; 61.02; 55.27; 51.61; 51.38; 41.42; 40.94; 28.77; 28.55; 28.45; 28.23.

C) The P-epimers were separated on a silica gel column using a gradient of methanol in chloroform $(0\rightarrow 2\%)$ with 0.2% of pyridine as the eluent.

"Fast"-5Cf: isolated yield 13%;

³¹P NMR (CDCl₃) δ: 97.74 ppm.

"Slow"-5Cs: isolated yield 32%;

³¹P NMR (CDCl₃) δ: 97.25 ppm.

Page 1

Figure S3.1. ¹H NMR spectrum of 5'-O-DMT-*N*4-benzoyl-3'-amino-2',3'-dideoxy-cytidine-3'-*N*-(2-thio-4,4-dimethyl-1,3,2-oxathiaphospholane) (**5C**).

Figure S3.2. ¹³C NMR spectrum of 5'-O-DMT-*N*4-benzoyl-3'-amino-2',3'-dideoxy-cytidine-3'-*N*-(2-thio-4,4-dimethyl-1,3,2-oxathiaphospholane) (**5C**).

Figure S3.3. ³¹P NMR spectra of 5'-O-DMT-*N*4-benzoyl-3'-amino-2',3'-dideoxy-cytidine-3'-*N*-(2-thio-4,4-dimethyl-1,3,2-oxathiaphospholane) "*Fast*" **5Cf** (an upper panel) and "*Slow*" **5Cs** (a lower panel).

Data Set S4. 5'-O-DMT-3'-amino-3'-deoxy-thymidine-3'-*N*-(2-thio-4,4-dimethyl-1,3,2-oxathiaphospholane) (**5T**).

 A) HRMS (TOF MS ES+) m/z for C₃₅H₄₀N₃O₇S₂PNa calculated m/z: 732.1943, found m/z: 732.1951 [M+Na]⁺.

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -50.0, max = 80.0 Element prediction: Off Number of isotope peaks used for i-FIT = 5

Monoisotopic Mass, Even Electron Ions 602 formula(e) evaluated with 7 results within limits (up to 50 closest results for each mass) Elements Used:

C: 0-40 H: 0-45 N: 0-5 O: 0-8 S: 0-2 P: 0-2 Na: 1-1

1902018_RK_823A 16 (0.177) Cm (13:18) TOF MS ES+

												171e+006
100			303.139	91								
% 104.5871 0 100	152.0624202.0	0786_226.0	30 789 300	4.1422 319.1334 	446.029	4 492.03	349 566.2 00 550	258 618.861	4 7	732. 05.9450 700	1951 733.1981 750	794.1656
Minimum: Maximum:		15.0	5.0	-50.0 80.0								
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula				
732.1951	732.1943 732.1960 732.1939 732.1973 732.1926 732.1926 732.1926 732.1983	0.8 -0.9 1.2 -2.2 2.5 2.5 -3.2	1.1 -1.2 1.6 -3.0 3.4 3.4 -4.4	17.5 12.5 22.5 17.5 22.5 17.5 21.5	804.0 802.7 802.6 803.4 806.2 802.7 807.3	2.610 1.397 1.281 2.080 4.890 1.323 5.944	7.36 24.72 27.79 12.50 0.75 26.62 0.26	C35 H40 C33 H45 C37 H37 C34 H41 C37 H35 C36 H41 C40 H40	N3 07 N 08 S N5 04 N5 04 N5 06 N 08 S N 05 S	S2 P 2 P2 S P2 S2 P2 S2 Na S2 Na 2 P N	Na Na Na Na Ja	

B) ¹H NMR (CDCl₃, δ, ppm): 11.45 (br.s, 1H, -NH), 7.55-7.23 (m, 3H, H-6, Ph), 7.28-7.14 (m, 7H, Ph), 6.79-6.69 (m, 4H, Ph) 6.12-5.95 (m, 1H, H-1'), 4.53-4.41 (m, 1H, H-3'), 4.03-3.87 (m, 2H, CH₂-OTP), 3.81-3.72 (m, 1H, H-4'), 3.66 (br.s, 6H, 2xCH₃ from DMT group), 3.43-3.28 (m, 2H, H-5', H-5"), 2.46-2.32 (m, 2H, H-2'), 1.52-1.24 (m, 9H, 3xCH₃ from C5 and OTP);

¹³C NMR (CDCl₃, δ, ppm): 164.41; 158.63; 151.01; 149.49; 149.28; 149.06; 144.43; 135.66; 135.47; 135.27; 133.15; 130.18; 130.14; 128.19; 127.92; 127.02; 123.71; 123.36; 123.16; 122.96; 113.21; 111.26; 86.78; 85.27; 85.21; 84.32; 78.42; 62.87; 60.82; 55.16; 53.16; 40.42; 28.51; 28.22; 11.83.

C) The P-epimers were separated on a silica gel column using ethyl acetate : hexane (1:1, v/v) (no pyridine added) as an eluent.

"Fast"-5Tf: isolated yield 29%;

³¹P NMR (CDCl₃) δ: 96.69 ppm;

"Slow"-5Ts: isolated yield 15%;

³¹P NMR (CDCl₃) δ: 96.58 ppm.

Figure S4.1. ¹H NMR spectrum of 5'-O-DMT-3'-amino-3'-deoxy-thymidine-3'-*N*-(2-thio-4,4-dimethyl-1,3,2-oxathiaphospholane) (**5T**).

Figure S4.2. ¹³C NMR spectrum of 5'-O-DMT-3'-amino-3'-deoxy-thymidine-3'-*N*-(2-thio-4,4-dimethyl-1,3,2-oxathiaphospholane) (**5T**).

Figure S4.3. ³¹P NMR spectra of 5'-O-DMT-3'-amino-3'-deoxy-thymidine-3'-*N*-(2-thio-4,4-dimethyl-1,3,2-oxathiaphospholane): *"Fast*' **5Tf** (an upper panel) and *"Slow*' **5Ts** (a lower panel).

Figure S5. ³¹P NMR spectra recorded after synthesis of 5'-O-DMT-*N*6-benzoyl-3'-amino-2',3'-dideoxy-adenosine-3'-*N*-(2-thio-1,3,2-oxathiaphospholane).

Plot A: the crude reaction mixture; plot B: after "flash" chromatography.

Figure S6.1. A ${}^{31}P$ NMR spectrum of ${}^{DMT}dG^{iBu}{}_{NPSMe}T_{OAc}$ amidodiester (10f).

Figure S6.2. A ¹H NMR spectrum of ^{DMT}dG^{iBu}_{NPSMe}T_{OAc} amidodiester (**10f**).

Figure S6.3. A ^{13}C NMR spectrum of $^{DMT}dG^{iBu}_{NPSMe}T_{OAc}$ amidodiester (10f).

Figure S7. The structure of ^{DMT}dG^{iBu}_{NPSMe}T_{OAc} amidodiester (**10f**) derived from the X-ray experiment. The atom labels ending with "A" indicate the atoms of the thymidine residue.

Figure S8. Analysis of **21** obtained from **5Tf**. Left: a ³¹P NMR spectrum; right : a MALDI-TOF MS spectrum.

Figure S9. A MALDI-TOF MS spectrum recorded for ${}^{DMT}T_{PO}(T_{PO})_4(T_{NPS})_3T$. The band at m/z 2716 corresponds to a molecular ion of the product detritylated due to the acidity of the matrix used.

Scheme S1. Solid phase synthesis of chimeric NPS/PO oligomer $DMTT_{PO}(T_{PO})_4(T_{NPS})_3T$ utilizing an unresolved NOTP-T monomer **4T** and the standard thymidine phosphoramidite monomer.

Table S1. Isola	ted yield,	HR MS or	r FAB MS	6 (a negativ	e ions mod	e), and ³	³¹ P NMR	data for	unresolve	d
monomers 4-6										

B ['] B B	Code	Yield	MW Calc.	FAB MS (<i>m/z</i>)	³¹ P NMR
N,N		(13018120, 70)	(Da)	[M]⁻	δ <i>,</i> ppm)
Cyt ^{Bz} H,H	4C	70	798	799.2385 HR MS, [M+H]⁺	96.45 95.94
Gua ^{iBu}	46	64	776	775	96.92
H,H		04	//0	//5	96.72
Thy	41	71	691	690	95.31
H,H	41	/1	001	080	94.66
Ade ^{Bz}	FA	61	011	021	95.95
Me,Me	5A	01	022	021	95.21
Gua ^{iBu}	FG	40	804	802	97.04
Me,Me	50	45	804	805	96.64
Ade ^{Bz}		50	0.50	0.64	97.01
-(CH ₂) ₅ -	6A	58	862	861	96.56
Cyt ^{Bz}	60	40	020	027	96.30
-(CH ₂)5-	θC	49	038	03/	95.54
Thy -(CH₂)₅-	6Т	88	749	748	95.80 95.35

Table S2. Experimental details of crystallographic analysis.

Crystal data

Chemical formula	C48H55N8O13PS·2(CH3OH)
Mr	1079.11
Crystal system, space group	Monoclinic, P21
Temperature (K)	173
a, b, c (Å)	10.2758 (6), 14.8286 (8), 18.2612 (10)
β (°)	99.346 (3)
V (Å3)	2745.6 (3)
Z	2
Radiation type	Cu Κα
µ (mm−1)	1.41
Crystal size (mm)	$0.24 \times 0.05 \times 0.03$
Data collection	
Diffractometer	Bruker D8 Venture
Absorption correction	Multi-scan SADABS2016/2 (Bruker,2016/2)
No. of measured, independent and observed [I > $2\sigma(I)$] reflections	57523, 10009, 9499
Rint	0.071
(sin θ/λ)max (Å−1)	0.603
<u>Refinement</u>	
R[F2 > 2σ(F2)], wR(F2), S	0.120, 0.370, 1.80
No. of reflections	10009
No. of parameters	773
No. of restraints	65
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
(Δ/σ)max	0.142
Δρmax, Δρmin (e Å−3)	1.18, <u>-</u> 0.57
Absolute structure	Flack x determined using 4079 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
Absolute structure parameter	0.176 (7)