Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supplementary materials

Figure S2: SEM-EDS mapping of (a) Silver, (b) Manganese, (c) Nickel, (d) Oxygen, and (e)

is their Overlap

Figure S3: FTIR spectra of Ag NiMn₂O₄ nanocomposite calcined at 950 °C

Figure S4: Atomic Force Microscopy: (a) image of Ag·NiMn₂O₄ nanocomposite and (b)

linear surface roughness analysis

Figure S5: PLE (a) and PL(b) spectra of single metal oxide (Ag_2O) nanocomposites heated at

950 °C

Figure S6: PLE (a) and PL (b) spectra of single metal oxide (NiO) nanocomposites heated at

950 °C

Figure S7: PLE (a) and PL (b) spectra of single metal oxide (MnO) nanocomposites heated at 950 $^{\circ}$ C

Figure S8: Effect of catalyst amount of $Ag \cdot NiMn_2O_4$ on degradation efficiency of MV under visible light (a) 0.3 gL⁻¹, (b) 0.4 gL⁻¹, (c) 0.5 gL⁻¹, (d) 0.6 gL⁻¹, (e) 0.7 gL⁻¹, and (f) % of efficiency comparison (MV concentration: 5 mgL⁻¹; pH-4; irradiation time 4h)

Figure S9: (a-e) Recycle and reuse of photocatalyst for MV degradation (MV concentration: $5mgL^{-1}$), Photocatalyst dosage: 0.4 gL⁻¹, in the presence of catalyst Ag·NiMn₂O₄ at pH-9 (irradiation time 4h).

Figure S10: Anti-bacterial study of as synthesized nanocomposite against (a) E. coli, (b) K.
pneumoniae, (c) P. aeruginosa, (d) P. mirabilis, (e) S. mercescens, (f) B. subtilisabsence and
(g) S. aureus in absence of light. (center point is GEN 10 standard)

Figure S11: Anti-bacterial study of as synthesized nanocomposite against (a) *E. coli*, (b) *K. pneumoniae*, (c) *P. aeruginosa*, (d) *P. mirabilis*, (e) *S. mercescens*, (f) *B. subtilisabsence* and (g) *S. aureus* in presence of light (center point is GEN 10 standard)

Parameters	Values (nm)
Average roughness, R _a	2154.4 pm
Root Mean Square (RMS) Roughness, R _q	3.57
Maximum peak to valley Distance, R_y or Total roughness, R_t	17.57
Maximum profile peak height, R _p	13.93
Maximum profile valley Depth, R _v	-3.64

Table S1: Line Roughness of synthesized composites Ag·NiMn₂O₄ from AFM data

Table S2: Values of rate constant (k) and r² for dye degradation kinetic

Observation	k (min ⁻¹)	r ²
pH-4	0.01043	0.97731
pH-7	0.0032	0.97964
pH-9	0.0062	0.99563

Isolates	Gram positive/ Gram negative
E. coli	Gram negative
K. pneumoniae	Gram negative
P. aeruginosa	Gram negative
P. mirabilis	Gram negative
S. mercescens	Gram negative
B. subtilis	Gram positive

S. aureus	Gram positive

Table S4: Antibacterial Activities of Ag NiMn ₂ O ₄ nanocomposite against pathogen	ic
bacteria in dark	

Bacterial culture	Diameter of inhibition zone, Diz (mm)			Diameter of well, Dw (mm)	Ratio, R=Diz/Dw		
	1	2	3		1	2	3
Escherichia coli	19	22	24	4	4.75	5.5	6
Klebsiella pneumoniae	24	26	26	4	6	6.5	6.5
Pseudomonas aeruginosa	20	24	28	4	5	6	7
Proteus mirabilis	16	17	18	4	4	4.25	4.5
Serratia marcescens	22	26	28	4	5.5	6.5	7
Bacillus subtilis	18	22	25	4	4.5	5.5	6.25
Staphylococcus aureus	20	24	28	4	5	6	7

Table S5: Antibacterial Activities of $Ag \cdot NiMn_2O_4$ nanocomposite against pathogenic bacteriain the presence of visible light.

Bacterial culture	Diameter of inhibition zone, Diz (mm)				Diameter of well, Dw (mm)	Ratio, R=Diz/Dw			
	1	2	3	GEN 10		1	2	3	GEN 10
Escherichia coli	27	28	29	20	4	6.75	7	7.25	5
Klebsiella pneumonia	27	28	30	22	4	6.75	7	7.5	5.5
Pseudomonas aeruginose	24	27	28	22	4	6	6.75	7	5.5
Proteus mirabilis	18	19	19	20	4	4.5	4.75	4.75	5
Serratia marcescens	29	30	32	25	4	7.25	7.5	8	6.25
Bacillus subtilis	26	27	28	20	4	6.5	6.75	7	5
Staphylococcus aureus	26	27	30	20	4	6.5	6.75	7.5	5