Supporting Information

Controlling the Oxidation State of Molybdenum Oxide Nanoparticles Prepared by Ionic Liquid/Metal Sputtering to Enhance Plasmon-induced Charge Separation

Kazutaka Akiyoshi,^a Tatsuya Kameyama,^a Takahisa Yamamoto,^a Susumu Kuwabata,^b

Tetsu Tatsuma,^c and Tsukasa Torimoto*^a

^a Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan. E-mail: torimoto@apchem.nagoya-u.ac.jp

^b Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.

^c Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.

E-mail: torimoto@chembio.nagoya-u.ac.jp

Figure S1. O 1s XPS spectra of as-deposited MoO_x NPs (a,d) and those after annealing at 473 K for 30 (b,e) and 120 min (c,f). The RTILs used were HyEMI-BF4 (a-c) and EMI-BF4 (d-f). The obtained signals were assigned with O 1s peaks of 530.9 eV for O²⁻, 531.7 eV for O⁻ or OH, and 532.8 eV for H₂O.^{S1} The Mo sputtering was carried out with a discharge current of 30 mA.

Figure S2. XPS spectra for Mo 3d levels of as-sputter-deposited MoO_x NPs in EMI-BF4 (a) and those after annealing at 473 K for 30 (b) and 120 min (c). The Mo sputtering was carried out with a discharge current of 30 mA.

Table S1. Fractions of Mo species with different oxidation states in total Mo atoms determined by peak fitting of Mo 3d XPS spectra (Figs. 2 and S2) for as-deposited MoO_x NPs in HyEMI-BF4 or EMI-BF4 and those after annealing at 473 K for 0 min, 30 min and 120 min. The chemical formulas of MoO_x NPs were estimated from XPS signals of Mo 3d and O 1s, by considering the peak areas of each band and their corresponding relative sensitivity factor.

RTIL	Heating time _ (min)	Mo fraction (%)			Chemical
		Mo(IV)	Mo(V)	Mo(VI)	formula
HyEMI-BF4	0	41.1	33.2	25.7	MoO _{1.69}
HyEMI-BF4	30	0.0	33.1	66.9	MoO _{2.29}
HyEMI-BF4	120	7.7	24.0	68.3	MoO _{3.09}
EMI-BF4	0	57.8	22.6	19.6	MoO _{1.17}
EMI-BF4	30	30.7	43.5	25.7	MoO _{1.61}
EMI-BF4	120	3.1	69.8	27.1	MoO _{2.60}

Figure S3. XRD patterns of as-deposited MoO_x NPs in HyEMI-BF4 and those after annealing at 473 K for 30 min. The standard diffraction pattern of orthorhombic MoO_3 (PDF card# 00-005-0508) is also shown. The Mo sputtering was carried out with a discharge current of 30 mA.

Figure S4. Extinction spectra of as-sputter-deposited NPs in HyEMI-BF4 with various discharge currents. Discharge currents in units of mA are shown in the panel.

Figure S5. Representative TEM images and size distribution of MoO_x NPs deposited in HyEMI-BF4 with various discharge currents after heating at 473 K for 30 min.

Reference

(S1) A. S. Etman, H. N. Abdelhamid, Y. Yuan, L. Wang, X. Zou, and J. Sun, *ACS Omega*, 2018, **3**, 2201-2209.