Supporting Information

The Impact of Alicyclic Substituents on the Extraction Ability of New Family of 1,10-Phenanthroline-2,9-diamides

Pavel S. Lemport^{a*}, Petr I. Matveev^a, Alexander V. Yatsenko^a, Mariia V. Evsiunina^a, Valentine S. Petrov^a, Boris N. Tarasevich^a, Vitaly A. Roznyatovsky^a, Pavel V. Dorovatovskii^b, Victor N. Khrustalev^{c,d}, Sergey S. Zhokhov^a, Vitaly P. Solov'ev^e, Leonid A. Aslanov^a, Vladimir G. Petrov^a, Stepan N. Kalmykov^a, Valentine G. Nenajdenko^a, Yuri A. Ustyniuk^a

^a Department of Chemistry, M.V. Lomonosov Moscow State University

^bNational Research Center "Kurchatov Institute"

^c Department of Inorganic Chemistry, Peoples' Friendship University of Russia

^dN.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences

^e Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

* Correspondence to: Pavel S. Lemport, E-mail: lemport@org.chem.msu.ru

Table of contents

1. Experimental part	
1.1 Materials	
1.2 Methods	S2
1.3 Synthesis and analytical data	S4
1.4 Solvent extraction experiments	S8
2. NMR, IR and HRMS spectra of synthesized compounds	S9-S39
3. Extraction testing data	S40
4. X-ray analysis data	S41-S80
Appendix A	
References	

1. Experimental part

1.1 Materials

The list of the studied diamides and their labels (3a-3h) are presented in table 1.

All syntheses were performed in argon inert atmosphere. Dichloromethane was purified by distillation over calcium hydride prior to use. Triethylamine was purified by simple distillation, previously held for 12 hours over sodium hydroxide. All the cyclic amines which are liquid under normal conditions were purified by simple or vacuum distillation. Carbazole was previously purified by recrystallization from toluene.

3-Nitrobenzotrifluoride ("F-3") analytical grade was purchased from Rhodia (France) and was used as a solvent in the extraction experiments without further purification.

1.2 Methods

NMR spectra were recorded using standard 5 mm sample tubes on Agilent 400-MR spectrometer with operating frequencies of 400.1 MHz (¹H) and 100.6 MHz (¹³C) and Bruker Avance-600 spectrometer with operating frequencies of 600.1 MHz (¹H) and 150.6 MHz (¹³C). Deuterated solvents CDCl₃, THF-d₈, benzene-d₆, acetonitrile-d₃, and DMSO-d₆ for NMR spectra were purchased from commercial sources and used without further purification.

The ROESY spectrum was recorded on the Agilent 400-MR spectrometer using standard ROESYAD pulse sequence with a mixing time 200 msec and an acquisition time 150 msec.

IR spectra were recorded on FTIR spectrometer Nicolet iS5 (Thermo Scientific) using an internal reflectance attachment with diamond optical element – attenuated total reflection (ATR) with 45° angle of incidence. Resolution 4 cm⁻¹, the number of scans is 32.

IR spectra in CCl₄ solutions were recorded in a 0.06 cm cuvette with KBr windows at the concentrations of compounds 0.01 mol·l⁻¹ at room temperature. Ultrasonic bath was used to facilitate dissolution of diamides 3f - 3h.

HRMS ESI - mass spectra were recorded on the MicroTof Bruker Daltonics and Orbitrap Elite instruments.

Single crystals of $1 \cdot DMF \cdot H_2O$ and 3f were obtained upon slow isothermal (25°C) recrystallization of corresponding substances from DMF-ethyl acetate (50/50) mixture, single crystals of 3a were obtained upon slow adding of n-hexane to a solution of 3a in ethyl acetate-chloroform (50/50) mixture, and $3b \cdot H_2O$ – by recrystallization of 3b from acetonitrile.

X-ray diffraction experiments for $1 \cdot DMF \cdot H_2O$ and 3f were performed on the "Belok"

beamline of the National Research Center "Kurchatov Institute" (Moscow, Russian Federation) using a Rayonix SX165 CCD detector and X-ray radiation with $\lambda = 0.78790$ Å and 0.79272 Å for 1.DMF·H₂O and 3f, respectively. For 3a and 3b·H₂O, the STOE STADIVARI diffractometer equipped with the fine-focus Cu GeniX 3D radiation source ($\lambda =$ 1.54186 Å) and a Pilatus 100K detector was used. For 1.DMF·H₂O and 3f, data reduction procedure was carried out with the *iMOSFLM* program from the CCP4 program set¹, absorption correction was performed with the SCALA program², whereas for **3a** and **3b** \cdot **H**₂**O**, the STOE X-AREA program was applied. All structures were determined by direct methods and refined by full-matrix least-squares on F^2 with all non-H atoms given anisotropically. Hydrogen atoms of hydroxy groups and water molecule in 1.DMF·H₂O were located from difference Fourier maps and refined isotropically with $U_{iso}(H) = 1.5U_{eq}(O)$. For **3b**·H₂**O**, we failed to determine the positions of water molecule H atoms, which seem to be disordered. All other H atoms were positioned geometrically and refined as riding at parent C atoms with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl groups and $U_{iso}(H) = 1.2U_{eq}(C)$ for all other H atoms. For 1.DMF·H₂O and 3f, all calculations were performed with SHELXTL^{3a}, whereas for 3a and **3b**·**H**₂**O** SHELXT^{3b} was used for the structure solution and SHELXL^{3a} – for the refinement. Full crystallographic data are deposited in Cambridge Structural Database, deposition numbers 1938798 (1·DMF·H₂O), 1988714 (3a), 1983770 (3b·H₂O), 1938799 (3f). Selected crystal data for the studied compounds are presented below:

1·DMF·H₂O: C₁₇H₁₅Cl₂N₃O₆, $M_r = 428.22$, triclinic, *P*-1, *a* = 7.158(1), *b* = 8.352(2), *c* = 15.356(3) Å, $\alpha = 81.10(3)$, $\beta = 82.92(3)$, $\gamma = 78.62(3)^\circ$, V = 885.1(3) Å³, Z = 2, $d_c = 1.607$ g cm⁻³, $\mu = 0.538$ mm⁻¹, F(000) = 440, T = 100(2) K, $T_{min}/T_{max} = 0.890/0.980$, $2\theta_{max} = 61.52^\circ$, 15682 reflections, 4025 unique ($R_{int} = 0.028$), $R_1 = 0.031$ for 3711 reflections with $I > 2\sigma(I)$, $wR_2 = 0.089$ for all reflections and 268 refined parameters, GoF on $F^2 = 1.073$.

3a: C₂₂H₂₀Cl₂N₄O₂, $M_r = 443.32$, triclinic, *P*-1, a = 7.7488(3), b = 10.1002(4), c = 13.5780(5) Å, $\alpha = 79.974(3)$, $\beta = 76.276(3)$, $\gamma = 83.821(3)^\circ$, V = 1014.12(7) Å³, Z = 2, $d_c = 1.452$ g cm⁻³, $\mu = 3.11$ mm⁻¹, F(000) = 460, T = 293(2) K, $T_{min}/T_{max} = 0.672/0.953$, $2\theta_{max} = 135.95^\circ$, 8085 reflections, 3593 unique ($R_{int} = 0.023$), $R_1 = 0.043$ for 2581 reflections with $I > 2\sigma(I)$, $wR_2 = 0.129$ for all reflections and 281 refined parameters, GoF on $F^2 = 1.025$.

3b·**H**₂**O**: C₂₄H₂₆Cl₂N₄O₃, M_r = 489.39, monoclinic, C2/c, a = 36.3267(15), b = 6.8415(2), c = 22.1880(11) Å, $\beta = 122.928(3)$, V = 4628.5(4) Å³, Z = 8, $d_c = 1.405$ g cm⁻³, $\mu = 2.81$ mm⁻¹, F(000) = 2048, T = 293(2) K, $T_{min}/T_{max} = 0.865/0.972$, $2\theta_{max} = 135.37^{\circ}$, 26181 reflections, 4179 unique ($R_{int} = 0.113$), $R_1 = 0.036$ for 2196 reflections with $I > 2\sigma(I)$, $wR_2 = 0.072$ for all reflections and 298 refined parameters, GoF on $F^2 = 0.846$.

3f: C₃₀H₂₀Cl₂N₄O₂, M_r = 539.40, triclinic, *P*-1, *a* = 7.2410(14), *b* = 11.680(2), *c* = 14.506(3) Å, $\alpha = 103.259(14)$, $\beta = 95.030(2)$, $\gamma = 97.662(18)^{\circ}$, V = 1174.6(4) Å³, Z = 2, $d_c = 1.525$ g cm⁻³, $\mu = 0.420$ mm⁻¹, *F*(000) = 556, *T* = 100(2) K, *T*_{min}/*T*_{max} = 0.93/0.97, $2\theta_{max} = 61.92^{\circ}$, 18379 reflections, 5233 unique ($R_{int} = 0.078$), $R_1 = 0.059$ for 3967 reflections with $I > 2\sigma(I)$, $wR_2 = 0.153$ for all reflections and 344 refined parameters, GoF on $F^2 = 1.021$.

Detailed crystallographic data provided here in Chapter 3 (see below, from page S40).

1.3 Synthesis and analytical data

4,7-dichloro-1,10-phenanthroline-2,9-dicarbonyl chloride 2

0.35 Mol (118 g) of thoroughly dried dicarboxylic acid 1 was added to 1.4 l of SOCl₂ at room temperature and stirring. 100 μ l of DMF was added to the resulting suspension and the reaction mixture was stirred for 4 hours at 50°C. After that, SOCl₂ was removed at low pressure (200 Torr), then 250 ml of dry benzene was added to the residue, and then the solvent was distilled off again. Absolute diethyl ether was added to the solid rest. It was washed on a filter with cold ether, after that the product **2** was dried in vacuum to a constant mass. Yield 95%, pale-yellow fibers, T.decomp. > 220°C, ¹H NMR (400 MHz, CDCl₃) δ 8.58 (s, 2H), 8.52 (s, 2H).

General method for synthesis of diamides 3a-e

A solution of the corresponding cyclic amine (50 mmol) in 5 ml of methylene chloride was added at -20°C under vigorous stirring to a suspension of 10 mmol (3.74 g) of chloride **2** in 25 ml of methylene chloride. Then the reaction mixture was allowed to reach room temperature and stirred overnight. Next, the reaction mixture was diluted with 50 ml of methylene chloride, washed with water (2×50 ml), dried over sodium sulfate, and the solvent was distilled off. The residue was treated with hexane, recrystallized from a mixture of chloroform/hexane, obtaining the desired product in the form of a white or slightly colored solid.

(4,7-Dichloro-9-(pyrrolidin-1-ylcarbonyl)-1,10-phenanthrolin-2-yl)(pyrrolidin-1-yl)-

methanone 3a. Yield 82 % (3.64 g), yellowish powder, m.p. 245-247°C, $R_f 0.78$ (acetone); ¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 2H), 8.31 (s, 2H), 4.09 (t, J = 6.5 Hz, 4H), 3.74 (t, J = 6.5 Hz, 4H), 2.01 – 1.91 (m, 8H); ¹³C NMR (101 MHz, CDCl₃) δ 164.9, 154.3, 145.2, 143.8, 127.5, 124.4, 124.2, 49.2, 47.3, 26.9, 24.2; IR (cm^{-1}) 3095, 3073, 2968, 2878 (C-H stretching vibrations), 1634, 1622, 1615 (C=O), 1573, 1522, 1449, 1437, 1416 (C=C, C=N); HRMS (ESI-TOF) (m/z) [M+H]⁺ calculated for C₂₂H₂₁Cl₂N₄O₂ 443.1037, found 443.1034.

(4,7-Dichloro-9-(piperidin-1-ylcarbonyl)-1,10-phenanthrolin-2-yl)(piperidin-1-yl)-

methanone 3b. Yield 81 % (3.82 g), white powder, m.p. 249-251°C, R_f 0.58 (acetone:CH₂Cl₂ 1:4); ¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 2H), 8.10 (s, 2H), 3.79 (t, J = 5.3 Hz, 4H), 3.72 (t, J = 5.3 Hz, 4H), 1.82 – 1.59 (m, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 166.0, 154.5, 145.3, 143.9, 127.3, 124.3, 124.0, 48.7, 43.9, 26.7, 25.7, 24.7; IR (cm⁻¹) 3084, 3043, 2938, 2914, 2843 (C-H stretching vibrations), 1634, 1626 (C=O), 1571, 1532, 1456, 1446, 1425 (C=C, C=N); HRMS (ESI-TOF) (*m*/*z*) [M+H]⁺ calculated for C₂₄H₂₅Cl₂N₄O₂ 471.1350, found 471.1335.

Azepan-1-yl(9-(azepan-1-ylcarbonyl)-4,7-dichloro-1,10-phenanthrolin-2-yl)methanone 3c. Yeild 82 % (4.10 g), white powder, m.p. 238-241°C, R_f 0.53 (acetone:CH₂Cl₂ 1:5), ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 2H), 8.11 (s, 2H), 3.82 – 3.72 (m, 8H), 1.90 (p, *J* = 5.9 Hz, 4H), 1.78 (p, *J* = 5.9 Hz, 4H), 1.71 – 1.57 (m, 8H); ¹³C NMR (101 MHz, CDCl₃) δ 167.6, 154.9, 145.4, 143.8, 127.3, 124.1, 124.0, 49.9, 47.4, 29.6, 27.6, 27.3, 27.0; IR (cm⁻¹) 3037, 2926, 2853 (C-H stretching vibrations), 1634, 1631, 1626 (C=O), 1590, 1530, 1456, 1427 (C=C, C=N); HRMS (ESI-TOF) (*m*/*z*) [M+H]⁺ calculated for C₂₆H₂₉Cl₂N₄O₂ 499.1663, found 499.1662.

(4,7-dichloro-9-(morpholin-4-ylcarbonyl)-1,10-phenanthrolin-2-yl)(morpholin-4-

yl)methanone 3d. Yield 71 % (3.37 g), white powder, m.p. 236-238°C, R_f 0.75 (acetone:CH₂Cl₂ 1:1); ¹H NMR (400 MHz, CDCl₃), δ 8.41 (s, 2H), 8.21 (s, 2H), 3.98 (t, *J* = 4.8 Hz, 4H), 3.95 – 3.83 (m, 8H), 3.75 (t, *J* = 4.8 Hz, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 153.5, 145.1, 144.3, 127.6, 124.9, 124.3, 67.3, 67.0, 48.2, 43.3; IR (cm⁻¹) 3093, 3026, 2966, 2912, 2852 (C-H stretching vibrations), 1644, 1640, 1634, 1634, 1628, (C=O), 1570, 1528, 1475, 1462, 1444, 1427 (C=C, C=N); HRMS (ESI-TOF) (*m*/*z*) [M+H]⁺ calculated for C₂₂H₂₁Cl₂N₄O₄ 475.0935, found 475.0928.

(4,7-dichloro-9-((4-methylpiperazin-1-yl)carbonyl)-1,10-phenanthrolin-2-yl)(4-

methylpiperazin-1-yl)methanone 3e. Yield 79 % (3.96 g), white powder, m.p. 235-238°C; ¹H NMR (400 MHz, CDCl₃) δ 8.39 (s, 2H), 8.17 (s, 2H), 3.98 – 3.87 (m, 8H), 2.55 (t, J = 5.0Hz, 4H), 2.42 (t, J = 5.0 Hz, 4H), 2.32 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 153.9, 145.1, 144.1, 127.5, 124.7, 124.2, 55.7, 54.8, 47.5, 46.2, 42.8; IR (cm⁻¹) 3041, 2973, 2937, 2894, 2860, 2794, 2749 (C-H stretching vibrations), 1635 (C=O), 1531, 1460, 1446, 1425 (C=C, C=N); HRMS (ESI-TOF) (m/z) [M+H]⁺ calculated for C₂₄H₂₇Cl₂N₆O₂ 501.1568, found 501.1562.

General method for synthesis of diamides 3f-h

Triethylamine (30 mmol, 3.04 g, 4.20 ml) was added to a suspension of 10 mmol (3.74 g) of chloride **2** in 25 ml of methylene chloride at -20 °C under vigorous stirring and then the solution of the corresponding secondary amine (22.5 mmol) in 10 ml of methylene chloride was added dropwise. After that, the reaction mixture was stirred at -20 °C for 1 hour, allowed to reach the room temperature and was additionally stirred for 24 hours. Then it was washed with water (2×50 ml), dried over sodium sulfate and the solvent was distilled off. The residue was washed with chloroform, giving the desired product in the form of slightly colored solid.

(4,7-dichloro-9-(2,3-dihydro-1*H*-indol-1-ylcarbonyl)-1,10-phenanthrolin-2-yl)(2,3dihydro-1*H*-indol-1-yl)methanone 3f. Yield 76 % (4.10 g), yellowish fibers, m.p. 289-290°C, R_f 0.74 (EtOAc:CH₂Cl₂ 1:10); ¹H NMR (400 MHz, DMSO- d_6 , recorded at 343.15 K) δ 8.56 (s, 2H), 8.39 (s, 2H), 8.20 (bs, 2H), 7.30 (d, J = 7.8 Hz, 2H), 7.22 (bs, 2H), 7.08 (t, J =7.8 Hz, 2H), 4.52 (bs, 4H), 3.17 – 3.05 (m, 4H); IR (cm⁻¹) 3109, 3070, 3053, 2971, 2936, 2862 (C-H stretching vibrations), 1634 (C=O), 1597, 1569, 1533, 1481, 1463, 1437, 1403 (C=C, C=N); HRMS (ESI-TOF) (m/z) [M+H]⁺ calculated for C₃₀H₂₀Cl₂N₄O₂ 539.1045, found 539.1045.

(4,7-dichloro-9-(1,2,3,4-tetrahydroquinolin-1-ylcarbonyl)-1,10-phenanthrolin-2-yl)-(1,2,3,4-tetrahydroquinolin-1-yl)methanone 3g. Yeild 90 % (5.10 g), yellowish powder, m.p. 238-241°C, R_f 0.59 (EtOAc:CH₂Cl₂ 1:2); ¹H NMR (400 MHz, C₆D₆) δ 7.96 (s, 2H), 7.84 (s, 2H), 7.62 (bs, 2H), 6.93 – 6.79 (m, 6H), 3.86 – 3.78 (m, 4H), 2.49 (t, *J* = 6.8 Hz, 4H), 1.70 – 1.62 (m, 4H); ¹³C NMR (101 MHz, C₆D₆) δ 166.9, 155.5, 145.9, 143.3, 139.7, 131.4, 128.9, 127.2, 126.1, 125.3, 124.9, 124.2, 123.8, 46.2, 27.2, 24.1; IR (cm⁻¹) 3061, 3042, 2946, 2885, 2843 (C-H stretching vibrations), 1651, 1644, 1640, 1637 (C=O), 1602, 1581, 1571, 1530, 1491, 1450, 1439, 1400 (C=C, C=N); HRMS (ESI-TOF) (*m*/*z*) [M+H]⁺ calculated for C₃₂H₂₅Cl₂N₄O₂ 567.1350, found 567.1349.

9*H***-carbazol-9-yl(9-(9***H***-carbazol-9-ylcarbonyl)-4,7-dichloro-1,10-phenanthrolin-2yl)methanone 3h. Yield 63 % (4.00 g), white powder, m.p. 389-393°C; ¹H NMR (CDCl₃), δ, ppm: ¹H NMR (400 MHz, Chloroform-***d***) δ 8.61 (s, 2H), 8.22 (s, 2H), 7.80 – 7.73 (m, 4H), 7.31 (d,** *J* **= 8.5 Hz, 4H), 7.16 (td,** *J* **= 7.4, 1.1 Hz, 4H), 7.05 (ddd,** *J* **= 8.5, 7.4, 1.1 Hz, 4H);** IR (cm⁻¹) 3097, 3061 (C-H stretching vibrations), 1674 (C=O), 1527, 1491, 1480, 1444, 1381 (C=C, C=N); HRMS (ESI-TOF) (m/z) [M+H]⁺ calculated for C₃₈H₂₁Cl₂N₄O₂ 635.1035, found 635.1029.

1.4 Solvent extraction experiments

Solvent extraction experiments were carried out as follows. 0.5 ml of organic solution of the extractant in 3-*nitrobenzotrifluoride* ("F-3") and 0.5 ml of aqueous phase containing nitric acid and radionuclides were mixed in 1.5 ml polypropylene vial. Three sets of aqueous solutions were prepared for extraction experiments. The first one contained trace concentrations of ²⁴¹Am (\approx 1500 Bq·ml⁻¹) and ¹⁵²Eu (\approx 2500 Bq·ml⁻¹), the second set contained ²⁴¹Am (\approx 1500 Bq·ml⁻¹) and ²⁴⁴Cm (\approx 2000 Bq·ml⁻¹). The third set contained lanthanum and all lanthanides (except promethium) in total concentration 10⁻⁴ mol·l⁻¹. The phases were stirred for 15 minutes on a vortex shaker at 25±1°C in an air thermostat. Then samples were centrifuged (5 minutes, 6000 rpm) and aliquots of each phase were taken for determination of radionuclide or lanthanide concentration.

Content of ²⁴¹Am ($E_{\gamma} = 59.5 \text{ keV}$) and ¹⁵²Eu ($E_{\gamma} = 121.8 \text{ keV}$) was determined by gamma-spectrometry using a high-pure germanium detector GR 3818 (Canberra Ind.) in the first set of experiments. Second set of samples was analyzed by alpha-spectrometry ($E_{\alpha}(^{241}\text{Am}) = 5637 \text{ keV}, E_{\alpha}(^{244}\text{Cm}) = 5901 \text{ keV}$) using an alpha spectrometer Model 7401 with Si detectors (Canberra Ind.). Initial aqueous phase and equilibrium aqueous phases of the third set of samples were analyzed by ICP-OES (Agilent ICP-OES 720).

The distribution ratios (*D*) of metals were calculated for the first set of experiments as the ratio of the counting rate in the organic and aqueous phase. For the second and the third sets of samples activity/concentration in organic phase was calculated as difference between concentrations in initial and equilibrium aqueous phases. The separation factors (*SF*) were calculated as the ratio of the distribution ratios. All extraction experiments were repeated three times. Uncertainties for 0.01 < D < 100 are about $\pm 10\%$.

2. NMR, IR and HRMS spectra of synthesized compounds

4,7-dichloro-1,10-phenanthroline-2,9-dicarbonyl chloride 2.

¹H NMR spectra in CDCl₃ at 25°C

(4,7-dichloro-9-(pyrrolidin-1-ylcarbonyl)-1,10-phenanthrolin-2-yl)(pyrrolidin-1-yl)methanone 3a

¹H NMR (above) and ¹³C NMR (below) spectra in CDCl₃ at 25°C

(4,7-dichloro-9-(piperidin-1-ylcarbonyl)-1,10-phenanthrolin-2-yl)(piperidin-1-yl)methanone 3b

¹H NMR (above) and ¹³C NMR (below) spectra in CDCl₃ at 25°C

IR spectra at 25°C

Azepan-1-yl(9-(azepan-1-ylcarbonyl)-4,7-dichloro-1,10-phenanthrolin-2-yl)methanone 3c

 ^1H NMR (above) and ^3C NMR 1 (below) spectra in CDCl₃ at 25°C

(4,7-Dichloro-9-(morpholin-4-ylcarbonyl)-1,10-phenanthrolin-2-yl)(morpholin-4-yl)methanone 3d

 $^1\mathrm{H}$ NMR (above) and $^{13}\mathrm{C}$ NMR (below) spectra in CDCl₃ at 25°C

S17

(4,7-Dichloro-9-((4-methylpiperazin-1-yl)carbonyl)-1,10-phenanthrolin-2-yl)(4-methylpiperazin-1-yl)methanone 3e ¹H NMR (above) and ¹³C NMR (below) spectra in CDCl₃ at 25°C

$^{1}\text{H}/^{13}\text{C}$ HSQC NMR in CDCl₃ at 25°C

S19

$^1\mathrm{H}/^{13}\mathrm{C}$ HMBC NMR in CDCl₃ at 25°C

¹H/¹³C HMBC NMR in CDCl₃ at 25°C, fragmental view (H-scale region from 4.1 to 2.1 ppm)

IR spectra at 25°C

(4,7-Dichloro-9-(2,3-dihydro-1*H*-indol-1-ylcarbonyl)-1,10-phenanthrolin-2-yl)(2,3-dihydro-1*H*-indol-1-yl)methanone 3f ¹H NMR (above) and ¹³C NMR (below) spectra in CDCl₃ at 25°C

 13 C NMR spectra in CDCl₃ at 25°C, fragmental view (13 C-scale, δ from 114 to 133 ppm)

¹H NMR spectra in DMSO-d₆ at 25°C (above) and 55°C (below)

¹H NMR spectra in toluene-d₈ at 55°C

COSY ¹H/¹H NMR spectra in CDCl₃ at -30°C (general view)

ROESY ¹H/¹H NMR spectra in CDCl₃ at -30°C (left) and 25 °C (right)

4(4,7-Dichloro-9-(1,2,3,4-tetrahydroquinolin-1-ylcarbonyl)-1,10-phenanthrolin-2-yl)(1,2,3,4-tetrahydroquinolin-1-yl)methanone 3g ¹H NMR (above) and ¹³C NMR (below) spectra in CDCl₃ at 25 °C

S33

¹H NMR (above) and ¹³C NMR (below) spectra in C_6D_6 at 55°C

1 H/ 13 C ASAPHMQC NMR spectra in C₆D₆ at 55°C

S35

9H-Carbazol-9-yl(9-(9H-carbazol-9-ylcarbonyl)-4,7-dichloro-1,10-phenanthrolin-2-yl)methanone 3h

¹H NMR spectra in CDCl₃ at 55°C, fragmental view (H-scale from 8.8 to 6.9 ppm)

HRMS spectra

Display Report

printed:

S39

3. Extraction testing data

Figure S1 The distribution ratios (*D*) of Am^{3+} and Eu^{3+} for extraction from 3 mol·l⁻¹ nitric acid. The organic phase is saturated solutions of ligands in "F-3".

Solvation numbers for 3a

Figure S2. lgD(Am)-lgC(L) and lgD(Eu)-lgC(L) dependences for **3a** ligand. Aqueous phase $-5 \text{ mol} \cdot l^{-1}$ nitric acid

Table S1. The distribution ratios (*D*) of Am^{3+} and Eu^{3+} depending on the concentration of the ligand **3a** in "F-3" during extraction from 5 mol·l⁻¹ HNO₃.

3a , M	$D(\mathrm{Am}^{3+})$	$D(\mathrm{Eu}^{3+})$
0.015	7.66	0.47
0.01	3.88	0.23
0.005	1.34	0.09
0.0025	0.55	0.05
0.00125	0.21	0.03

4. X-ray analysis data

4,7-dichloro-1,10-phenanthroline-2,9-dicarboxylic acid 1.

Figure S3. Asymmetric part of crystal structure of $1 \cdot DMF \cdot H_2O(a)$ and packing diagram showing the layer structure (*b*). Thermal ellipsoids are drawn at the 70% probability level.

The molecule of **1** is closely planar, with the mean deviation of non-hydrogen atoms from the least-squared plane of 0.096(1) Å, and adopts in the crystal a *trans-cis* conformation (Fig. 4*a*). Data on bond lengths, flat and dihedral angles and intermolecular contacts in this structure are given in ESI (Table S4).

In the crystal of $1 \cdot H_2 O \cdot DMF$, the molecules are linked by O-H···O and O-H···N hydrogen bonds into hexamers $(1)_2(H_2O)_2(DMF)_2$ and further by Cl···O, Cl···H and H···H contacts – into flat layers parallel to the (2 1 -1) plane (Fig. 4*b*). These layers are joined by π - π interactions, with the interplanar distance of 3.252(1) Å and the shortest intermolecular contact involving phenanthroline carbon atoms C4···C5 (1-*x*, 1-*y*, -*z*) of 3.406(2) Å. In contrast to three other structures presented in this work, in crystals of $1 \cdot H_2O \cdot DMF$, the phenanthroline fragments do not exhibit stacking. They are interlaced with DMF molecules of neighboring layers.

Table 52. Crystal data and sir deture reminiment for		
Identification code	1·DMF·H ₂ O	
Empirical formula	C17 H15 Cl2 N3 O6	
Formula weight	428.22	
Temperature	100(2) K	
Wavelength	0.7879 Å	
Crystal system	Triclinic	
Space group	<i>P</i> -1	
Unit cell dimensions	a = 7.1583(14) Å	$\alpha = 81.10(3)^{\circ}$.
	b = 8.3520(17) Å	$\beta = 82.92(3)^{\circ}.$
	c = 15.356(3) Å	$\gamma = 78.62(3)^{\circ}$.
Volume	885.1(3) Å ³	
Z	2	
Density (calculated)	1.607 Mg/m ³	
Absorption coefficient	0.538 mm ⁻¹	
F(000)	440	
Crystal size	$0.20 \ x \ 0.10 \ x \ 0.03 \ mm^3$	
Theta range for data collection	1.495 to 30.758°.	
Index ranges	-9<=h<=9, -10<=k<=10, -19<=	=1<=19
Reflections collected	15682	
Independent reflections	4025 [R(int) = 0.0281]	
Completeness to theta = 28.212°	99.4 %	
Absorption correction	Semi-empirical from equivaler	nts
Max. and min. transmission	0.980 and 0.890	
Refinement method	Full-matrix least-squares on F ²	2
Data / restraints / parameters	4025 / 4 / 268	
Goodness-of-fit on F ²	1.073	
Final R indices [for 3711 rflns with $I \ge 2\sigma(I)$]	R1 = 0.0313, wR2 = 0.0871	
R indices (all data)	R1 = 0.0335, wR2 = 0.0888	
Extinction coefficient	0.041(4)	
Largest diff. peak and hole	0.297 and -0.241 e·Å-3	

Table S2. Crystal data and structure refinement for $1 \cdot DMF \cdot H_2O$

Atom	X	У	Z	U(eq)
Cl(1)	1854(1)	5842(1)	-767(1)	26(1)
Cl(2)	6463(1)	-1793(1)	1981(1)	30(1)
O(1)	1395(2)	8576(1)	2859(1)	36(1)
O(2)	535(1)	9952(1)	1565(1)	28(1)
O(3)	6935(1)	687(1)	4889(1)	31(1)
O(4)	5182(1)	3232(1)	4748(1)	29(1)
N(1)	2753(2)	5792(1)	2093(1)	23(1)
C(2)	1908(2)	7128(2)	1604(1)	24(1)
C(3)	1610(2)	7200(2)	714(1)	24(1)
C(4)	2205(2)	5788(2)	330(1)	24(1)
C(4A)	3083(2)	4319(2)	819(1)	23(1)
C(5)	3678(2)	2799(2)	463(1)	26(1)
C(6)	4516(2)	1434(2)	963(1)	26(1)
C(6A)	4859(2)	1464(2)	1856(1)	23(1)
C(7)	5751(2)	70(2)	2396(1)	25(1)
C(8)	6066(2)	168(2)	3243(1)	26(1)
C(9)	5481(2)	1703(2)	3552(1)	24(1)
N(10)	4618(1)	3054(1)	3081(1)	22(1)
C(10A)	4302(2)	2939(2)	2242(1)	22(1)
C(10B)	3349(2)	4408(2)	1710(1)	22(1)
C(11)	1253(2)	8631(2)	2072(1)	25(1)
C(12)	5936(2)	1818(2)	4475(1)	24(1)
O(5)	-301(1)	2356(1)	2426(1)	28(1)
N(11)	-216(2)	3298(1)	3726(1)	25(1)
C(13)	143(2)	2141(2)	3204(1)	26(1)
C(14)	-1175(2)	4964(2)	3428(1)	30(1)
C(15)	415(2)	2974(2)	4614(1)	30(1)
O(6)	6218(2)	3706(1)	6163(1)	41(1)

Table S3. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å² x 10³) for 1·DMF·H₂O. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Cl(1)-C(4)	1.7269(13)	C(6A)-C(10A)	1.4159(17)
Cl(2)-C(7)	1.7328(14)	C(7)-C(8)	1.3643(18)
O(1)-C(11)	1.2175(16)	C(8)-C(9)	1.4043(18)
O(2)-C(11)	1.3024(16)	C(8)-H(8)	0.9500
O(2)-H(2)	0.92(2)	C(9)-N(10)	1.3273(17)
O(3)-C(12)	1.2114(17)	C(9)-C(12)	1.5139(18)
O(4)-C(12)	1.3063(16)	N(10)-C(10A)	1.3549(16)
O(4)-H(4)	0.91(2)	C(10A)-C(10B)	1.4618(18)
N(1)-C(2)	1.3276(17)	O(5)-C(13)	1.2516(16)
N(1)-C(10B)	1.3489(17)	N(11)-C(13)	1.3165(17)
C(2)-C(3)	1.3994(17)	N(11)-C(14)	1.4569(17)
C(2)-C(11)	1.5088(17)	N(11)-C(15)	1.4569(17)
C(3)-C(4)	1.3690(19)	С(13)-Н(13)	0.9500
C(3)-H(3)	0.9500	C(14)-H(14A)	0.9800
C(4)-C(4A)	1.4110(18)	C(14)-H(14B)	0.9800
C(4A)-C(10B)	1.4186(17)	C(14)-H(14C)	0.9800
C(4A)-C(5)	1.4275(18)	C(15)-H(15A)	0.9800
C(5)-C(6)	1.350(2)	C(15)-H(15B)	0.9800
C(5)-H(5)	0.9500	C(15)-H(15C)	0.9800
C(6)-C(6A)	1.4273(18)	O(6)-H(6A)	0.89(2)
C(6)-H(6)	0.9500	O(6)-H(6B)	0.88(2)
C(6A)-C(7)	1.4104(18)		
C(11)-O(2)-H(2)	109.4(13)		
C(12)-O(4)-H(4)	112.1(12)		
C(2)-N(1)-C(10B)	117.83(11)		
N(1)-C(2)-C(3)	124.32(12)		
N(1)-C(2)-C(11)	115.39(11)		
C(3)-C(2)-C(11)	120.29(11)		
C(4)-C(3)-C(2)	117.56(12)		
C(4)-C(3)-H(3)	121.2		
C(2)-C(3)-H(3)	121.2		
C(3)-C(4)-C(4A)	120.88(12)		
C(3)-C(4)-Cl(1)	118.49(10)		
C(4A)-C(4)-Cl(1)	120.62(10)		
C(4)-C(4A)-C(10B)	116.41(12)		
C(4)-C(4A)-C(5)	123.36(12)		
C(10B)-C(4A)-C(5)	120.22(12)		
C(6)-C(5)-C(4A)	120.64(12)		

Table S4. Bond lengths [Å] and angles [°] for $1 \cdot DMF \cdot H_2O$.

C(6)-C(5)-H(5)

119.7

C(4A)-C(5)-H(5)	119.7
C(5)-C(6)-C(6A)	121.46(12)
C(5)-C(6)-H(6)	119.3
C(6A)-C(6)-H(6)	119.3
C(7)-C(6A)-C(10A)	116.52(11)
C(7)-C(6A)-C(6)	123.20(12)
C(10A)-C(6A)-C(6)	120.28(12)
C(8)-C(7)-C(6A)	120.93(12)
C(8)-C(7)-Cl(2)	119.37(10)
C(6A)-C(7)-Cl(2)	119.70(10)
C(7)-C(8)-C(9)	117.61(12)
C(7)-C(8)-H(8)	121.2
C(9)-C(8)-H(8)	121.2
N(10)-C(9)-C(8)	124.37(12)
N(10)-C(9)-C(12)	118.51(11)
C(8)-C(9)-C(12)	117.08(11)
C(9)-N(10)-C(10A)	117.48(11)
N(10)-C(10A)-C(6A)	123.08(12)
N(10)-C(10A)-C(10B)	118.57(11)
C(6A)-C(10A)-C(10B)	118.34(11)
N(1)-C(10B)-C(4A)	122.97(12)
N(1)-C(10B)-C(10A)	118.03(11)
C(4A)-C(10B)-C(10A)	119.00(11)
O(1)-C(11)-O(2)	124.22(12)
O(1)-C(11)-C(2)	121.54(12)
O(2)-C(11)-C(2)	114.24(11)
O(3)-C(12)-O(4)	125.47(12)
O(3)-C(12)-C(9)	121.15(12)
O(4)-C(12)-C(9)	113.37(11)
C(13)-N(11)-C(14)	121.56(12)
C(13)-N(11)-C(15)	120.97(11)
C(14)-N(11)-C(15)	117.41(11)
O(5)-C(13)-N(11)	124.03(12)
O(5)-C(13)-H(13)	118.0
N(11)-C(13)-H(13)	118.0
N(11)-C(14)-H(14A)	109.5
N(11)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5
N(11)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5
N(11)-C(15)-H(15A)	109.5

N(11)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
N(11)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
H(6A)-O(6)-H(6B)	111(2)

Atom	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Cl(1)	29(1)	30(1)	20(1)	-3(1)	-5(1)	-6(1)
Cl(2)	37(1)	21(1)	31(1)	-7(1)	-5(1)	-2(1)
O(1)	51(1)	27(1)	27(1)	-7(1)	-12(1)	6(1)
O(2)	36(1)	22(1)	26(1)	-3(1)	-7(1)	-1(1)
O(3)	37(1)	27(1)	29(1)	-2(1)	-11(1)	0(1)
O(4)	35(1)	27(1)	25(1)	-7(1)	-9(1)	2(1)
N(1)	24(1)	23(1)	23(1)	-4(1)	-3(1)	-3(1)
C(2)	23(1)	24(1)	24(1)	-4(1)	-3(1)	-4(1)
C(3)	24(1)	25(1)	23(1)	-1(1)	-4(1)	-4(1)
C(4)	23(1)	29(1)	20(1)	-2(1)	-3(1)	-6(1)
C(4A)	21(1)	26(1)	23(1)	-4(1)	-1(1)	-5(1)
C(5)	29(1)	29(1)	22(1)	-6(1)	-2(1)	-6(1)
C(6)	29(1)	24(1)	25(1)	-7(1)	-1(1)	-5(1)
C(6A)	24(1)	24(1)	23(1)	-4(1)	-1(1)	-5(1)
C(7)	26(1)	22(1)	27(1)	-5(1)	-1(1)	-4(1)
C(8)	28(1)	23(1)	27(1)	-2(1)	-4(1)	-3(1)
C(9)	23(1)	24(1)	24(1)	-3(1)	-3(1)	-4(1)
N(10)	22(1)	23(1)	22(1)	-3(1)	-3(1)	-3(1)
C(10A)	22(1)	23(1)	22(1)	-4(1)	-2(1)	-5(1)
C(10B)	21(1)	23(1)	22(1)	-4(1)	-2(1)	-4(1)
C(11)	26(1)	23(1)	26(1)	-3(1)	-5(1)	-2(1)
C(12)	24(1)	24(1)	24(1)	-2(1)	-3(1)	-5(1)
O(5)	34(1)	26(1)	25(1)	-4(1)	-5(1)	-2(1)
N(11)	26(1)	22(1)	26(1)	-4(1)	-3(1)	-1(1)
C(13)	26(1)	23(1)	27(1)	-4(1)	-3(1)	-2(1)
C(14)	33(1)	22(1)	33(1)	-4(1)	-4(1)	0(1)
C(15)	33(1)	29(1)	28(1)	-7(1)	-7(1)	0(1)
O(6)	59(1)	31(1)	31(1)	-12(1)	-22(1)	12(1)

Table S5. Anisotropic displacement parameters (Å² x 10³) for 1·DMF·H₂O. The anisotropic displacement factorexponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

Atom	Х	У	Ζ	U(iso)
H(2)	290(30)	10835(18)	1877(12)	43
H(4)	5540(30)	3310(20)	5286(8)	44
H(3)	1016	8192	388	29
H(5)	3483	2747	-132	31
H(6)	4886	431	715	31
H(8)	6661	-769	3610	31
H(13)	779	1077	3432	31
H(14A)	-289	5732	3403	45
H(14B)	-2295	5277	3844	45
H(14C)	-1586	5007	2838	45
H(15A)	1002	1810	4740	45
H(15B)	-688	3231	5047	45
H(15C)	1354	3665	4651	45
H(6A)	6970(30)	3010(20)	6526(12)	61
H(6B)	5930(30)	4693(16)	6337(14)	61

Table S6. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å² x 10³) for 1·DMF·H₂O.

Table S7. Torsion angles [°] for $1 \cdot DMF \cdot H_2O$.

		C(4A)-C(5)-C(6)-C(6A)	-0.8(2)
C(10B)-N(1)-C(2)-C(3)	-0.62(18)	C(5)-C(6)-C(6A)-C(7)	-179.23(12)
C(10B)-N(1)-C(2)-C(11)	179.32(10)	C(5)-C(6)-C(6A)-C(10A)	0.68(19)
N(1)-C(2)-C(3)-C(4)	1.07(19)	C(10A)-C(6A)-C(7)-C(8)	-0.68(18)
C(11)-C(2)-C(3)-C(4)	-178.87(11)	C(6)-C(6A)-C(7)-C(8)	179.22(12)
C(2)-C(3)-C(4)-C(4A)	0.11(18)	C(10A)-C(6A)-C(7)-Cl(2)	179.48(9)
C(2)-C(3)-C(4)-Cl(1)	179.96(9)	C(6)-C(6A)-C(7)-Cl(2)	-0.61(17)
C(3)-C(4)-C(4A)-C(10B)	-1.55(17)	C(6A)-C(7)-C(8)-C(9)	-0.31(19)
Cl(1)-C(4)-C(4A)-C(10B)	178.60(9)	Cl(2)-C(7)-C(8)-C(9)	179.53(9)
C(3)-C(4)-C(4A)-C(5)	177.99(11)	C(7)-C(8)-C(9)-N(10)	1.03(19)
Cl(1)-C(4)-C(4A)-C(5)	-1.87(17)	C(7)-C(8)-C(9)-C(12)	-176.74(11)
C(4)-C(4A)-C(5)-C(6)	179.81(12)	C(8)-C(9)-N(10)-C(10A)	-0.64(18)
C(10B)-C(4A)-C(5)-C(6)	-0.68(19)	C(12)-C(9)-N(10)-C(10A)	177.11(10)
C(9)-N(10)-C(10A)-C(6A)	-0.49(17)	N(10)-C(10A)-C(10B)-C(4A)	177.37(10)
C(9)-N(10)-C(10A)-C(10B)	179.80(11)	C(6A)-C(10A)-C(10B)-C(4A)	-2.35(17)
C(7)-C(6A)-C(10A)-N(10)	1.12(18)	N(1)-C(2)-C(11)-O(1)	-4.26(18)
C(6)-C(6A)-C(10A)-N(10)	-178.79(11)	C(3)-C(2)-C(11)-O(1)	175.68(12)
C(7)-C(6A)-C(10A)-C(10B)	-179.16(11)	N(1)-C(2)-C(11)-O(2)	176.00(11)
C(6)-C(6A)-C(10A)-C(10B)	0.93(17)	C(3)-C(2)-C(11)-O(2)	-4.06(17)
C(2)-N(1)-C(10B)-C(4A)	-1.02(18)	N(10)-C(9)-C(12)-O(3)	-170.34(12)
C(2)-N(1)-C(10B)-C(10A)	179.24(11)	C(8)-C(9)-C(12)-O(3)	7.57(18)
C(4)-C(4A)-C(10B)-N(1)	2.06(17)	N(10)-C(9)-C(12)-O(4)	8.52(16)
C(5)-C(4A)-C(10B)-N(1)	-177.49(11)	C(8)-C(9)-C(12)-O(4)	-173.57(11)
C(4)-C(4A)-C(10B)-C(10A)	-178.19(10)	C(14)-N(11)-C(13)-O(5)	-0.4(2)
C(5)-C(4A)-C(10B)-C(10A)	2.26(17)	C(15)-N(11)-C(13)-O(5)	-177.43(12)
N(10)-C(10A)-C(10B)-N(1)	-2.87(17)		
C(6A)-C(10A)-C(10B)-N(1)	177.40(10)		

				·····
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(2)-H(2)O(5)#1	0.92(2)	1.59(2)	2.5086(15)	175.6(19)
O(4)-H(4)O(6)	0.91(2)	1.59(2)	2.4919(15)	171.4(19)
C(13)-H(13)O(1)#2	0.95	2.33	3.0445(18)	131.2
C(15)-H(15A)O(3)#3	0.98	2.34	3.298(2)	165.4
O(6)-H(6A)O(1)#4	0.89(2)	1.81(2)	2.6964(18)	172(2)
O(6)-H(6B)O(4)#4	0.88(2)	2.30(2)	2.7802(17)	113.9(17)
O(6)-H(6B)N(10)#4	0.88(2)	2.15(2)	3.0316(17)	172(2)

Table S8. Hydrogen bonds for $1 \cdot DMF \cdot H_2O$ [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 x, y+1, z #2 x, y-1, z #3 -x+1, -y, -z+1 #4 -x+1, -y+1, -z+1

1,10-phenantroline-4,7-dichloro-2,9-diylbis(pyrrolidin-1-yl-methanone) 3a

Table S9. Crystal data and structure refinement for 3a.

Identification code	3a
Empirical formula	C22 H20 C12 N4 O2
Formula weight	443.32
Temperature	293(2) K
Wavelength	1.54186 Å
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	$a = 7.7488(3)$ Å $\alpha = 79.974(3)$ °
	$b = 10.1002(4) \text{ Å} \beta = 76.276(3)^{\circ}$
	$c = 13.5780(5) \text{ Å} \gamma = 83.821(3)^{\circ}$
Volume	1014.12(7) Å ³
Z, Calculated density	2, 1.452 Mg/m ³
Absorption coefficient	3.110 mm ⁻¹
F(000)	460
Crystal size	0.22 x 0.18 x 0.02 mm
Theta range for data collection	4.456 to 67.977°
Limiting indices	-4<=h<=9, -9<=k<=12, -16<=l<=16
Reflections collected / unique	8085 / 3593 [R(int) = 0.0232]
Completeness to theta = 67.686°	97.2 %
Absorption correction	Multi-scan

Max. and min. transmission0.953 and 0.672Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters3593 / 0 / 281Goodness-of-fit on F^2 1.025Final R indices [I>2sigma(I)]R1 = 0.0432, wR2 = 0.1222R indices (all data)R1 = 0.0603, wR2 = 0.1295Extinction coefficientn/aLargest diff. peak and hole0.306 and -0.295 e'Å⁻³

	X	У	Z	U(eq)
Cl(1)	1025(1)	9026(1)	5934(1)	70(1)
Cl(2)	3076(1)	2109(1)	4436(1)	60(1)
N(1)	4006(2)	5707(2)	7680(1)	41(1)
N(2)	5645(3)	6753(2)	9114(2)	50(1)
N(10)	4822(2)	3232(2)	7112(2)	43(1)
N(11)	7470(3)	1310(2)	7851(2)	54(1)
0(1)	2842(3)	7632(3)	9555(2)	82(1)
0(2)	5727(3)	-203(2)	7639(2)	87(1)
C(2)	3620(3)	6913(2)	7955(2)	43(1)
C(3)	2687(3)	7969(3)	7437(2)	48(1)
C(4)	2140(3)	7732(2)	6609(2)	46(1)
C(4A)	2465(3)	6453(2)	6286(2)	42(1)
C(5)	1913(3)	6120(3)	5441(2)	48(1)
C(6)	2308(3)	4888(3)	5158(2)	47(1)
C(6A)	3288(3)	3864(2)	5710(2)	41(1)
C(7)	3725(3)	2557(3)	5463(2)	46(1)
C(8)	4656(3)	1617(3)	6031(2)	48(1)
C(9)	5194(3)	2016(2)	6841(2)	45(1)
C(10A)	3866(3)	4141(2)	6554(2)	39(1)
C(10B)	3440(3)	5471(2)	6861(2)	39(1)
C(1)	4036(3)	7132(3)	8940(2)	49(1)
C(10)	6169(4)	955(3)	7482(2)	54(1)
C(11)	7239(3)	6334(3)	8376(2)	61(1)
C(12)	8571(5)	5904(5)	9021(3)	94(1)
C(13)	8041(5)	6577(4)	9915(3)	90(1)
C(14)	6068(4)	6932(3)	10080(2)	68(1)
C(17)	8400(4)	302(3)	8502(3)	70(1)
C(18)	9914(5)	1015(4)	8636(4)	92(1)
C(191)	9660(30)	2590(20)	8171(15)	61(4)
C(192)	10121(10)	2111(12)	7844(8)	75(2)
C(20)	8315(4)	2587(3)	7610(3)	68(1)

Table S10. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2$ x 10³) for **3a.** U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Cl(1)-C(4)	1.735(2)	C(4A)-C(10B)	1.418(3)
Cl(2)-C(7)	1.734(2)	C(4A)-C(5)	1.419(3)
N(1)-C(2)	1.319(3)	C(5)-C(6)	1.349(4)
N(1)-C(10B)	1.353(3)	C(6)-C(6A)	1.429(3)
N(2)-C(1)	1.328(3)	C(6A)-C(7)	1.404(3)
N(2)-C(11)	1.468(3)	C(6A)-C(10A)	1.405(3)
N(2)-C(14)	1.469(3)	C(7)-C(8)	1.370(4)
N(10)-C(9)	1.326(3)	C(8)-C(9)	1.397(3)
N(10)-C(10A)	1.357(3)	C(9)-C(10)	1.513(3)
N(11)-C(10)	1.332(3)	C(10A)-C(10B)	1.456(3)
N(11)-C(20)	1.461(4)	C(11)-C(12)	1.490(4)
N(11)-C(17)	1.473(3)	C(12)-C(13)	1.448(5)
O(1)-C(1)	1.220(3)	C(13)-C(14)	1.505(5)
O(2)-C(10)	1.223(3)	C(17)-C(18)	1.502(5)
C(2)-C(3)	1.404(3)	C(18)-C(192)	1.396(8)
C(2)-C(1)	1.504(3)	C(18)-C(191)	1.61(2)
C(3)-C(4)	1.357(3)	C(191)-C(20)	1.43(1)
C(4)-C(4A)	1.414(3)	C(192)-C(20)	1.518(8)
C(2)-N(1)-C(10B)	118.0(2)	N(10)-C(9)-C(8)	124.3(2)
C(1)-N(2)-C(11)	127.2(2)	N(10)-C(9)-C(10)	118.5(2)
C(1)-N(2)-C(14)	120.4(2)	C(8)-C(9)-C(10)	117.2(2)
C(11)-N(2)-C(14)	111.7(2)	N(10)-C(10A)-C(6A)	123.6(2)
C(9)-N(10)-C(10A)	117.1(2)	N(10)-C(10A)-C(10B)	117.1(2)
C(10)-N(11)-C(20)	128.7(2)	C(6A)-C(10A)-C(10B)	119.3(2)
C(10)-N(11)-C(17)	120.1(2)	N(1)-C(10B)-C(4A)	123.4(2)
C(20)-N(11)-C(17)	110.8(2)	N(1)-C(10B)-C(10A)	118.0(2)
N(1)-C(2)-C(3)	123.7(2)	C(4A)-C(10B)-C(10A)	118.6(2)
N(1)-C(2)-C(1)	118.3(2)	O(1)-C(1)-N(2)	123.1(2)
C(3)-C(2)-C(1)	117.7(2)	O(1)-C(1)-C(2)	117.4(2)
C(4)-C(3)-C(2)	118.1(2)	N(2)-C(1)-C(2)	119.5(2)
C(3)-C(4)-C(4A)	121.2(2)	O(2)-C(10)-N(11)	122.5(2)
C(3)-C(4)-Cl(1)	119.3(2)	O(2)-C(10)-C(9)	118.2(2)
C(4A)-C(4)-Cl(1)	119.5(2)	N(11)-C(10)-C(9)	119.3(2)
C(4)-C(4A)-C(10B)	115.6(2)	N(2)-C(11)-C(12)	103.2(2)
C(4)-C(4A)-C(5)	124.6(2)	C(13)-C(12)-C(11)	107.9(3)
C(10B)-C(4A)-C(5)	119.8(2)	C(12)-C(13)-C(14)	107.5(2)
C(6)-C(5)-C(4A)	121.5(2)	N(2)-C(14)-C(13)	103.9(3)
C(5)-C(6)-C(6A)	120.9(2)	N(11)-C(17)-C(18)	104.6(3)
C(7)-C(6A)-C(10A)	116.4(2)	C(192)-C(18)-C(17)	105.2(4)

C(7)-C(6A)-C(6)	123.7(2)	C(17)-C(18)-C(191)	108.5(6)
C(10A)-C(6A)-C(6)	119.9(2)	C(20)-C(191)-C(18)	102.3(11)
C(8)-C(7)-C(6A)	120.8(2)	C(18)-C(192)-C(20)	108.8(5)
C(8)-C(7)-Cl(2)	119.0(2)	C(191)-C(20)-N(11)	112.1(8)
C(6A)-C(7)-Cl(2)	120.2(2)	N(11)-C(20)-C(192)	100.2(4)
C(7)-C(8)-C(9)	117.7(2)		

Table S12. Anisotropic displacement parameters (Å² x 10^3) for **3a**. The anisotropic displacement factor exponent takes the form: $-2\cdot\pi^2$ [$h^2\cdot a^{*2}\cdot U11 + \ldots + 2\cdot h\cdot k\cdot a^{*}\cdot b^{*}\cdot U12$]

	U11	U22	U33	U23	U13	U12
Cl(1)	86(1)	54(1)	81(1)	-11(1)	-48(1)	13(1)
Cl(2)	74(1)	67(1)	53(1)	-23(1)	-25(1)	-12(1)
N(1)	44(1)	47(1)	37(1)	-12(1)	-14(1)	-3(1)
N(2)	58(1)	57(1)	40(1)	-14(1)	-21(1)	-3(1)
N(10)	47(1)	44(1)	41(1)	-7(1)	-15(1)	-4(1)
N(11)	64(1)	45(1)	61(1)	-10(1)	-29(1)	4(1)
0(1)	69(1)	125(2)	58(1)	-48(1)	-11(1)	12(1)
0(2)	109(2)	49(1)	119(2)	6(1)	-62(2)	-19(1)
C(2)	41(1)	51(1)	40(1)	-12(1)	-9(1)	-2(1)
C(3)	49(1)	46(1)	52(2)	-15(1)	-16(1)	2(1)
C(4)	45(1)	46(1)	50(1)	-5(1)	-18(1)	1(1)
C(4A)	39(1)	47(1)	41(1)	-5(1)	-13(1)	-4(1)
C(5)	48(1)	57(2)	45(1)	-6(1)	-22(1)	-1(1)
C(6)	47(1)	59(2)	40(1)	-10(1)	-18(1)	-7(1)
C(6A)	40(1)	50(1)	37(1)	-10(1)	-10(1)	-8(1)
C(7)	45(1)	53(1)	44(1)	-14(1)	-11(1)	-14(1)
C(8)	53(1)	45(1)	52(2)	-15(1)	-13(1)	-8(1)
C(9)	48(1)	43(1)	48(1)	-9(1)	-14(1)	-5(1)
C(10A)	38(1)	46(1)	35(1)	-7(1)	-10(1)	-6(1)
C(10B)	38(1)	45(1)	33(1)	-7(1)	-9(1)	-4(1)
C(1)	55(1)	55(2)	40(1)	-14(1)	-11(1)	-4(1)
C(10)	67(2)	42(1)	58(2)	-9(1)	-24(1)	-2(1)
C(11)	57(2)	75(2)	60(2)	-21(1)	-25(1)	5(1)
C(12)	71(2)	125(3)	99(3)	-30(2)	-44(2)	9(2)
C(13)	95(2)	111(3)	82(2)	-9(2)	-59(2)	-8(2)
C(14)	90(2)	78(2)	46(2)	-16(1)	-32(1)	-8(2)
C(17)	84(2)	59(2)	74(2)	-13(2)	-37(2)	19(2)
C(18)	92(2)	85(2)	121(3)	-48(2)	-63(2)	33(2)
C(191)	53(7)	95(12)	40(8)	-23(6)	-10(6)	-5(7)
C(192)	57(3)	111(6)	62(5)	-17(4)	-12(3)	-21(3)
C(20)	69(2)	59(2)	86(2)	-16(2)	-36(2)	-4(1)

	Х	У	Z	U (eq)
Н(З)	2451	8807	7654	57
H(5)	1262	6767	5073	58
Н(б)	1939	4703	4595	56
H(8)	4920	743	5883	58
H(11A)	7636	7078	7840	74
H(11B)	7015	5594	8065	74
H(12A)	8610	4935	9228	112
H(12B)	9746	6149	8635	112
H(13A)	8675	7386	9807	108
H(13B)	8313	5987	10512	108
H(14A)	5418	6336	10655	81
H(14B)	5782	7856	10204	81
H(17A)	8841	-483	8169	85
Н(17В)	7613	17	9159	85
H(181)	11039	624	8280	110
H(182)	9922	920	9358	110
H(183)	9634	1317	9299	110
H(184)	10994	423	8582	110
H(191)	9266	3137	8712	73
H(192)	10754	2909	7723	73
H(193)	10933	1847	7237	90
H(194)	10616	2836	8048	90
H(201)	8844	2758	6881	81
H(202)	7416	3311	7770	81
H(203)	7679	3230	8046	81
H(204)	8417	2982	6896	81

Table S13. Hydrogen coordinates (x $10^4)$ and isotropic displacement parameters (Å 2 x $10^3)$ for 3a.

C(10B)-N(1)-C(2)-C(3)	-1.2(3)	C(6A)-C(10A)-C(10B)-N(1)	179.6(2)
C(10B)-N(1)-C(2)-C(1)	172.4(2)	N(10)-C(10A)-C(10B)-C(4A)	179.1(2)
N(1)-C(2)-C(3)-C(4)	0.5(4)	C(6A)-C(10A)-C(10B)-C(4A)	-0.7(3)
C(1)-C(2)-C(3)-C(4)	-173.1(2)	C(11)-N(2)-C(1)-O(1)	-170.1(3)
C(2)-C(3)-C(4)-C(4A)	1.2(4)	C(14)-N(2)-C(1)-O(1)	-0.4(4)
C(2)-C(3)-C(4)-Cl(1)	-178.6(2)	C(11)-N(2)-C(1)-C(2)	11.5(4)
C(3)-C(4)-C(4A)-C(10B)	-2.0(3)	C(14)-N(2)-C(1)-C(2)	-178.8(2)
Cl(1)-C(4)-C(4A)-C(10B)	177.8(2)	N(1)-C(2)-C(1)-O(1)	-128.5(3)
C(3)-C(4)-C(4A)-C(5)	179.0(2)	C(3)-C(2)-C(1)-O(1)	45.4(3)
Cl(1)-C(4)-C(4A)-C(5)	-1.2(3)	N(1)-C(2)-C(1)-N(2)	49.9(3)
C(4)-C(4A)-C(5)-C(6)	178.2(2)	C(3)-C(2)-C(1)-N(2)	-136.1(2)
C(10B)-C(4A)-C(5)-C(6)	-0.7(4)	C(20)-N(11)-C(10)-O(2)	170.2(3)
C(4A)-C(5)-C(6)-C(6A)	0.7(4)	C(17)-N(11)-C(10)-O(2)	-1.9(4)
C(5)-C(6)-C(6A)-C(7)	179.2(2)	C(20)-N(11)-C(10)-C(9)	-9.7(4)
C(5)-C(6)-C(6A)-C(10A)	-0.7(3)	C(17)-N(11)-C(10)-C(9)	178.2(2)
C(10A)-C(6A)-C(7)-C(8)	0.5(3)	N(10)-C(9)-C(10)-O(2)	141.1(3)
C(6)-C(6A)-C(7)-C(8)	-179.4(2)	C(8)-C(9)-C(10)-O(2)	-35.4(4)
C(10A)-C(6A)-C(7)-Cl(2)	-180.0(2)	N(10)-C(9)-C(10)-N(11)	-39.1(3)
C(6)-C(6A)-C(7)-Cl(2)	0.1(3)	C(8)-C(9)-C(10)-N(11)	144.5(2)
C(6A)-C(7)-C(8)-C(9)	-1.8(3)	C(1)-N(2)-C(11)-C(12)	-174.7(3)
Cl(2)-C(7)-C(8)-C(9)	178.6(2)	C(14)-N(2)-C(11)-C(12)	14.8(3)
C(10A)-N(10)-C(9)-C(8)	-0.5(3)	N(2)-C(11)-C(12)-C(13)	-23.5(4)
C(10A)-N(10)-C(9)-C(10)	-176.7(2)	C(11)-C(12)-C(13)-C(14)	23.9(4)
C(7)-C(8)-C(9)-N(10)	1.9(4)	C(1)-N(2)-C(14)-C(13)	-172.1(3)
C(7)-C(8)-C(9)-C(10)	178.1(2)	C(11)-N(2)-C(14)-C(13)	-0.9(3)
C(9)-N(10)-C(10A)-C(6A)	-1.0(3)	C(12)-C(13)-C(14)-N(2)	-14.1(4)
C(9)-N(10)-C(10A)-C(10B)	179.2(2)	C(10)-N(11)-C(17)-C(18)	172.1(3)
C(7)-C(6A)-C(10A)-N(10)	1.0(3)	C(20)-N(11)-C(17)-C(18)	-1.3(3)
C(6)-C(6A)-C(10A)-N(10)	-179.1(2)	N(11)-C(17)-C(18)-C(192)	-18.7(7)
C(7)-C(6A)-C(10A)-C(10B)	-179.3(2)	N(11)-C(17)-C(18)-C(191)	8.7(10)
C(6)-C(6A)-C(10A)-C(10B)	0.6(3)	C(17)-C(18)-C(191)-C(20)	-12.9(15)
C(2)-N(1)-C(10B)-C(4A)	0.2(3)	C(17)-C(18)-C(192)-C(20)	31.9(10)
C(2)-N(1)-C(10B)-C(10A)	179.9(2)	C(18)-C(191)-C(20)-N(11)	12.3(16)
C(4)-C(4A)-C(10B)-N(1)	1.3(3)	C(10)-N(11)-C(20)-C(191)	179.6(11)
C(5)-C(4A)-C(10B)-N(1)	-179.6(2)	C(17)-N(11)-C(20)-C(191)	-7.7(12)
C(4)-C(4A)-C(10B)-C(10A)	-178.3(2)	C(10)-N(11)-C(20)-C(192)	-153.9(5)
C(5)-C(4A)-C(10B)-C(10A)	0.7(3)	C(17)-N(11)-C(20)-C(192)	18.8(6)
N(10)-C(10A)-C(10B)-N(1)	-0.6(3)	C(18)-C(192)-C(20)-N(11)	-31.6(9)

D-НА	d(D-H)	d(HA)	d(DA)	<(DHA)
C(11)-H(11B)N(1)	0.97	2.50	3.041(3)	115.5
C(18)-H(183)O(1)#1	0.97	2.44	3.243(5)	140.1
C(191)-H(191)O(1)#1	0.97	2.57	3.22(2)	124.0
C(20)-H(202)N(10)	0.97	2.40	2.923(3)	113.4

Table S15. Hydrogen bonds for 3a [Å and °].

Symmetry transformations used to generate equivalent atoms: #1 -x+1, -y+1, -z+2

1,10-phenantroline-4,7-dichloro-2,9-diylbis(piperidin-1-yl-methanone) 3b

Identification code 3b Empirical formula $C_{24}H_{26}Cl_2N_4O_3$ Formula weight 489.39 Temperature 292(2) K Wavelength 1.54186 Å Monoclinic, C2/c Crystal system, space group Unit cell dimensions $a = 36.3267(15) \text{ Å} \alpha = 90^{\circ}$ $b = 6.8415(2) \text{ Å} \beta = 122.928(3)^{\circ}$ $c = 22.1880(11) \text{ Å} \text{ y} = 90^{\circ}$ 4628.5(4) Å³ Volume 8, 1.405 Mg/m^3 Z, Calculated density 2.810 mm^{-1} Absorption coefficient 2048 F(000) 0.12 x 0.10 x 0.02 mm Crystal size Theta range for data collection 3.998 to 67.731° -43<=h<=43, -4<=k<=8, -24<=1<=26 Limiting indices Reflections collected / unique 26181 / 4179 [R(int) = 0.1129]Completeness to theta = 67.686° 99.7 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.972 and 0.805 Refinement method Full-matrix least-squares on F^2 Data / restraints / parameters 4179 / 0 / 298

Goodness-of-fit on F^2	0.846
Final R indices [I>2sigma(I)]	R1 = 0.0362, wR2 = 0.0591
R indices (all data)	R1 = 0.0992, $wR2 = 0.0721$
Extinction coefficient	n/a
Largest diff. peak and hole	0.138 and $-0.154 \text{ e}/\text{\AA}^{-3}$

	X	У	Z	U(eq)
Cl(1)	1863(1)	5596(1)	3851(1)	67(1)
Cl(2)	2220(1)	5750(1)	814(1)	52(1)
0(1)	3520(1)	4399(3)	5939(1)	64(1)
0(2)	3944(1)	3082(3)	2818(1)	78(1)
0(3)	4013(1)	3332(5)	4453(2)	161(1)
N(1)	3216(1)	5624(3)	4235(1)	42(1)
N(10)	3340(1)	5415(3)	3138(1)	41(1)
N(2)	3895(1)	6663(3)	5735(1)	55(1)
N(11)	4157(1)	6245(3)	3013(1)	56(1)
C(2)	3155(1)	5658(3)	4770(1)	40(1)
C(3)	2740(1)	5624(3)	4668(1)	45(1)
C(4)	2382(1)	5642(3)	3999(1)	45(1)
C(4A)	2422(1)	5677(3)	3397(1)	38(1)
C(5)	2059(1)	5764(3)	2662(1)	45(1)
C(6)	2122(1)	5767(3)	2114(1)	43(1)
C(6A)	2558(1)	5669(3)	2256(1)	37(1)
C(7)	2644(1)	5648(3)	1705(1)	40(1)
C(8)	3066(1)	5485(3)	1878(1)	43(1)
C(9)	3399(1)	5352(3)	2600(1)	42(1)
C(10A)	2921(1)	5589(3)	2967(1)	38(1)
C(10B)	2857(1)	5628(3)	3561(1)	37(1)
C(1)	3541(1)	5553(4)	5524(1)	47(1)
C(11)	3937(1)	8236(4)	5326(1)	65(1)
C(12)	4011(1)	10199(5)	5686(2)	82(1)
C(13)	4399(1)	10116(5)	6451(2)	94(1)
C(14)	4349(1)	8469(5)	6860(1)	76(1)
C(15)	4270(1)	6515(4)	6470(1)	68(1)
C(10)	3864(1)	4818(4)	2821(1)	44(1)
C(17)	4617(1)	5771(5)	3312(1)	70(1)
C(18)	4884(1)	6081(5)	4100(2)	96(1)
C(19)	4833(1)	8106(6)	4294(2)	107(1)
C(20)	4355(1)	8625(5)	3961(2)	101(1)
C(21)	4094(1)	8239(4)	3163(2)	84(1)

Table S17. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($\mathring{A}^2 \times 10^3$) for **3b·H₂O.** U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table	S18.	Bond	lengths	[Å]	and	angles	[°]	for	3b·H₂O.
		20110	±0119 0110	LJ	00.	angroo	L J		

Cl(1)-C(4)	1.729(2)	C(4A)-C(10B)	1.415(3)
Cl(2)-C(7)	1.724(2)	C(4A)-C(5)	1.436(3)
O(1)-C(1)	1.245(3)	C(5)-C(6)	1.356(3)
O(2)-C(10)	1.222(3)	C(6)-C(6A)	1.439(3)
N(1)-C(2)	1.321(3)	C(6A)-C(10A)	1.403(3)
N(1)-C(10B)	1.348(3)	C(6A)-C(7)	1.417(3)
N(10)-C(9)	1.325(3)	C(7)-C(8)	1.368(3)
N(10)-C(10A)	1.359(3)	C(8)-C(9)	1.391(3)
N(2)-C(1)	1.341(3)	C(9)-C(10)	1.526(3)
N(2)-C(15)	1.453(3)	C(10A)-C(10B)	1.458(3)
N(2)-C(11)	1.468(3)	C(11)-C(12)	1.510(4)
N(11)-C(10)	1.332(3)	C(12)-C(13)	1.508(4)
N(11)-C(21)	1.452(3)	C(13)-C(14)	1.518(4)
N(11)-C(17)	1.460(3)	C(14)-C(15)	1.532(4)
C(2)-C(3)	1.398(3)	C(17)-C(18)	1.483(4)
C(2)-C(1)	1.489(3)	C(18)-C(19)	1.492(4)
C(3)-C(4)	1.340(3)	C(19)-C(20)	1.514(5)
C(4)-C(4A)	1.421(3)	C(20)-C(21)	1.511(4)
C(2)-N(1)-C(10B)	117.6(2)	C(7)-C(8)-C(9)	118.0(2)
C(9)-N(10)-C(10A)	117.3(2)	N(10)-C(9)-C(8)	124.7(2)
C(1)-N(2)-C(15)	119.3(2)	N(10)-C(9)-C(10)	114.5(2)
C(1)-N(2)-C(11)	127.0(2)	C(8)-C(9)-C(10)	120.3(2)
C(15)-N(2)-C(11)	113.3(2)	N(10)-C(10A)-C(6A)	122.8(2)
C(10)-N(11)-C(21)	124.3(2)	N(10)-C(10A)-C(10B)	117.1(2)
C(10)-N(11)-C(17)	120.0(2)	C(6A)-C(10A)-C(10B)	120.1(2)
C(21)-N(11)-C(17)	112.9(2)	N(1)-C(10B)-C(4A)	123.9(2)
N(1)-C(2)-C(3)	123.1(2)	N(1)-C(10B)-C(10A)	117.9(2)
N(1)-C(2)-C(1)	119.6(2)	C(4A)-C(10B)-C(10A)	118.2(2)
C(3)-C(2)-C(1)	117.1(2)	O(1)-C(1)-N(2)	122.2(2)
C(4)-C(3)-C(2)	119.5(2)	O(1)-C(1)-C(2)	117.5(2)
C(3)-C(4)-C(4A)	120.5(2)	N(2)-C(1)-C(2)	120.2(2)
C(3)-C(4)-Cl(1)	120.8(2)	N(2)-C(11)-C(12)	112.0(2)
C(4A)-C(4)-Cl(1)	118.7(2)	C(13)-C(12)-C(11)	110.6(3)
C(10B)-C(4A)-C(4)	115.4(2)	C(12)-C(13)-C(14)	111.0(2)
C(10B)-C(4A)-C(5)	120.1(2)	C(13)-C(14)-C(15)	110.9(2)
C(4)-C(4A)-C(5)	124.6(2)	N(2)-C(15)-C(14)	110.3(2)
C(6)-C(5)-C(4A)	121.3(2)	O(2)-C(10)-N(11)	124.4(2)
C(5)-C(6)-C(6A)	120.5(2)	O(2)-C(10)-C(9)	116.9(2)
C(10A)-C(6A)-C(7)	117.3(2)	N(11)-C(10)-C(9)	118.7(2)
C(10A)-C(6A)-C(6)	119.8(2)	N(11)-C(17)-C(18)	111.0(2)
C(7)-C(6A)-C(6)	123.0(2)	C(17)-C(18)-C(19)	111.7(3)
C(8)-C(7)-C(6A)	119.8(2)	C(18)-C(19)-C(20)	111.6(3)
C(8)-C(7)-Cl(2)	119.4(2)	C(21)-C(20)-C(19)	110.6(3)
C(6A)-C(7)-Cl(2)	120.7(2)	N(11)-C(21)-C(20)	110.9(3)

Table S19. Anisotropic displacement parameters (Å² x 10³) for **3b·H₂O.** The anisotropic displacement factor exponent takes the form: $-2\cdot\pi^2$ [h²·a*²·U11 + ... + 2·h·k·a*·b*·U12]

	54(1)					
01(1)		92(1)	75(1)	-4(1)	47(1)	-4(1)
Cl(2)	56(1)	56(1)	37(1)	-2(1)	20(1)	1(1)
0(1)	74(1)	74(1)	49(1)	16(1)	38(1)	5(1)
0(2)	69(1)	58(1)	116(2)	-16(1)	56(1)	6(1)
0(3)	130(2)	223(3)	141(2)	85(2)	80(2)	75(2)
N(1)	44(1)	45(1)	39(1)	-2(1)	25(1)	1(1)
N(10)	41(1)	47(1)	39(1)	-3(1)	26(1)	1(1)
N(2)	47(1)	70(2)	37(1)	4(1)	15(1)	2(1)
N(11)	41(1)	65(2)	63(2)	-6(1)	28(1)	-2(1)
C(2)	44(1)	41(1)	36(1)	-1(1)	24(1)	-1(1)
C(3)	54(2)	49(2)	43(2)	-3(1)	32(1)	-1(1)
C(4)	56(2)	41(1)	55(2)	-7(1)	41(1)	-5(1)
C(4A)	41(1)	33(1)	47(1)	-6(1)	27(1)	-2(1)
C(5)	39(1)	41(1)	57(2)	0(1)	28(1)	-2(1)
C(6)	45(1)	38(1)	41(1)	-2(1)	20(1)	-3(1)
C(6A)	39(1)	30(1)	41(1)	-1(1)	21(1)	-2(1)
C(7)	51(1)	32(1)	38(1)	0(1)	25(1)	0(1)
C(8)	49(2)	43(2)	44(2)	1(1)	29(1)	-1(1)
C(9)	42(1)	41(1)	46(2)	-3(1)	25(1)	0(1)
C(10A)	41(1)	33(1)	40(1)	-7(1)	23(1)	-4(1)
C(10B)	43(1)	36(1)	42(1)	-7(1)	29(1)	-2(1)
C(1)	56(2)	54(2)	40(1)	5(1)	32(1)	8(1)
C(11)	61(2)	92(2)	47(2)	7(2)	32(2)	-12(2)
C(12)	86(2)	87(2)	61(2)	-3(2)	32(2)	-32(2)
C(13)	106(3)	106(3)	68(2)	-6(2)	45(2)	-43(2)
C(14)	55(2)	119(3)	44(2)	-8(2)	20(2)	-19(2)
C(15)	58(2)	86(2)	59(2)	12(2)	32(2)	9(1)
C(10)	45(2)	52(2)	43(2)	-4(1)	28(1)	4(1)
C(17)	45(2)	94(2)	72(2)	-15(2)	31(2)	0(2)
C(18)	63(2)	127(3)	68(2)	-23(2)	17(2)	10(2)
C(19)	87(3)	121(3)	94(3)	-41(2)	36(2)	-10(2)
C(20)	122(3)	70(2)	130(3)	-40(2)	81(3)	-14(2)
C(21)	69(2)	48(2)	137(3)	7(2)	57(2)	1(1)

	Х	У	Z	U(eq)
Н(З)	2712	5589	5061	54
H(5)	1774	5820	2561	53
Н(б)	1882	5834	1643	52
H(8)	3128	5464	1522	52
H(111)	3672	8292	4848	78
H(112)	4180	7949	5275	78
H(121)	4063	11178	5423	98
H(122)	3751	10575	5678	98
H(131)	4426	11350	6687	113
H(132)	4665	9917	6456	113
H(141)	4104	8749	6907	91
H(142)	4612	8379	7338	91
H(151)	4529	6159	6470	81
H(152)	4217	5501	6719	81
H(171)	4729	6588	3089	85
H(172)	4641	4418	3208	85
H(181)	5191	5847	4281	115
H(182)	4795	5150	4328	115
H(191)	4964	9026	4131	129
H(192)	4987	8214	4813	129
H(201)	4236	7855	4184	121
Н(202)	4330	9995	4048	121
H(211)	3785	8462	2966	101
H(212)	4187	9140	2932	101

Table S20. Hydrogen coordinates ($x~10^4)$ and isotropic displacement parameters (Å $^2~x~10^3)$ for $3b\cdot H_2O.$

C(10B)-N(1)-C(2)-C(3)	2.4(3)	N(10)-C(10A)-C(10B)-N(1)	4.5(3)
C(10B)-N(1)-C(2)-C(1)	176.9(2)	C(6A)-C(10A)-C(10B)-N(1)	-177.5(2)
N(1)-C(2)-C(3)-C(4)	-2.9(4)	N(10)-C(10A)-C(10B)-C(4A)	-175.9(2)
C(1)-C(2)-C(3)-C(4)	-177.6(2)	C(6A)-C(10A)-C(10B)-C(4A)	2.2(3)
C(2)-C(3)-C(4)-C(4A)	0.6(4)	C(15)-N(2)-C(1)-O(1)	0.4(4)
C(2)-C(3)-C(4)-Cl(1)	179.9(2)	C(11)-N(2)-C(1)-O(1)	-171.8(2)
C(3)-C(4)-C(4A)-C(10B)	1.9(3)	C(15)-N(2)-C(1)-C(2)	-179.1(2)
Cl(1)-C(4)-C(4A)-C(10B)	-177.4(2)	C(11)-N(2)-C(1)-C(2)	8.7(4)
C(3)-C(4)-C(4A)-C(5)	-177.8(2)	N(1)-C(2)-C(1)-O(1)	-133.6(2)
Cl(1)-C(4)-C(4A)-C(5)	2.9(3)	C(3)-C(2)-C(1)-O(1)	41.2(3)
C(10B)-C(4A)-C(5)-C(6)	1.2(3)	N(1)-C(2)-C(1)-N(2)	45.9(3)
C(4)-C(4A)-C(5)-C(6)	-179.1(2)	C(3)-C(2)-C(1)-N(2)	-139.3(2)
C(4A)-C(5)-C(6)-C(6A)	0.4(3)	C(1)-N(2)-C(11)-C(12)	116.0(3)
C(5)-C(6)-C(6A)-C(10A)	-0.6(3)	C(15)-N(2)-C(11)-C(12)	-56.5(3)
C(5)-C(6)-C(6A)-C(7)	179.3(2)	N(2)-C(11)-C(12)-C(13)	54.2(3)
C(10A)-C(6A)-C(7)-C(8)	2.2(3)	C(11)-C(12)-C(13)-C(14)	-53.9(4)
C(6)-C(6A)-C(7)-C(8)	-177.8(2)	C(12)-C(13)-C(14)-C(15)	54.7(4)
C(10A)-C(6A)-C(7)-Cl(2)	-179.8(2)	C(1)-N(2)-C(15)-C(14)	-116.9(3)
C(6)-C(6A)-C(7)-Cl(2)	0.3(3)	C(11)-N(2)-C(15)-C(14)	56.3(3)
C(6A)-C(7)-C(8)-C(9)	-0.2(3)	C(13)-C(14)-C(15)-N(2)	-55.1(3)
Cl(2)-C(7)-C(8)-C(9)	-178.3(2)	C(21)-N(11)-C(10)-O(2)	-166.3(3)
C(10A)-N(10)-C(9)-C(8)	1.2(3)	C(17)-N(11)-C(10)-O(2)	-6.5(4)
C(10A)-N(10)-C(9)-C(10)	-170.3(2)	C(21)-N(11)-C(10)-C(9)	12.4(4)
C(7)-C(8)-C(9)-N(10)	-1.6(4)	C(17)-N(11)-C(10)-C(9)	172.3(2)
C(7)-C(8)-C(9)-C(10)	169.4(2)	N(10)-C(9)-C(10)-O(2)	90.1(3)
C(9)-N(10)-C(10A)-C(6A)	1.0(3)	C(8)-C(9)-C(10)-O(2)	-81.8(3)
C(9)-N(10)-C(10A)-C(10B)	179.1(2)	N(10)-C(9)-C(10)-N(11)	-88.7(3)
C(7)-C(6A)-C(10A)-N(10)	-2.7(3)	C(8)-C(9)-C(10)-N(11)	99.3(3)
C(6)-C(6A)-C(10A)-N(10)	177.3(2)	C(10)-N(11)-C(17)-C(18)	-104.3(3)
C(7)-C(6A)-C(10A)-C(10B)	179.3(2)	C(21)-N(11)-C(17)-C(18)	57.7(3)
C(6)-C(6A)-C(10A)-C(10B)	-0.7(3)	N(11)-C(17)-C(18)-C(19)	-54.9(4)
C(2)-N(1)-C(10B)-C(4A)	0.4(3)	C(17)-C(18)-C(19)-C(20)	53.2(4)
C(2)-N(1)-C(10B)-C(10A)	-179.9(2)	C(18)-C(19)-C(20)-C(21)	-52.2(4)
C(4)-C(4A)-C(10B)-N(1)	-2.5(3)	C(10)-N(11)-C(21)-C(20)	103.8(3)
C(5)-C(4A)-C(10B)-N(1)	177.2(2)	C(17)-N(11)-C(21)-C(20)	-57.3(3)
C(4)-C(4A)-C(10B)-C(10A)	177.9(2)	C(19)-C(20)-C(21)-N(11)	53.8(4)
C(5)-C(4A)-C(10B)-C(10A)	-2.4(3)		

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(8)-H(8)O(1)#1	0.93	2.39	3.287(3)	161.5
C(11)-H(111)N(1)	0.97	2.34	3.003(3)	125.0
C(12)-H(121)O(3)#2	0.97	2.53	3.477(4)	164.5
C(14)-H(141)Cl(1)#3	0.97	2.99	3.836(3)	146.6

Table S22. Hydrogen bonds for $3b{\cdot}H_2O$ [Å and °].

Symmetry transformations used to generate equivalent atoms: #1 x,-y+1,z-1/2 #2 x,y+1,z #3 -x+1/2,-y+3/2,-z+1

Identification code	3f	
Empirical formula	C30 H20 Cl2 N4 O2	
Formula weight	539.40	
Temperature	100(2) K	
Wavelength	0.79272 Å	
Crystal system	Triclinic	
Space group	<i>P</i> -1	
Unit cell dimensions	a = 7.2410(14) Å	$\alpha = 103.259(14)^{\circ}.$
	b = 11.680(2) Å	$\beta = 95.030(2)^{\circ}.$
	c = 14.506(3) Å	$\gamma = 97.662(18)^{\circ}.$
Volume	1174.6(4) Å ³	

Ζ	2
Density (calculated)	1.525 Mg/m ³
Absorption coefficient	0.420 mm ⁻¹
F(000)	556
Crystal size	0.15 x 0.05 x 0.05 mm ³
Theta range for data collection	1.621 to 30.956°.
Index ranges	-9<=h<=9, -15<=k<=15, -18<=l<=17
Reflections collected	18379
Independent reflections	5233 [R(int) = 0.0782]
Completeness to theta = 28.401°	97.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.970 and 0.930
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5233 / 0 / 344
Goodness-of-fit on F ²	1.021
Final R indices [for 3967 rflns with $I \ge 2\sigma(I)$]	R1 = 0.0593, $wR2 = 0.1400$
R indices (all data)	R1 = 0.0796, $wR2 = 0.1531$
Extinction coefficient	0.0017(2)
Largest diff. peak and hole	$0.556 \text{ and } -0.591 \text{ e.} \text{Å}^{-3}$

Atom	X	у	Z	U(eq)
Cl(1)	8479(1)	1751(1)	4525(1)	28(1)
Cl(2)	6572(1)	7792(1)	7018(1)	29(1)
O(1)	10198(3)	3311(2)	1305(1)	32(1)
O(2)	4792(3)	9134(2)	3699(1)	30(1)
N(1)	7817(3)	4637(2)	2970(2)	26(1)
N(2)	7145(3)	3479(2)	892(2)	28(1)
C(1)	8616(4)	3437(2)	1515(2)	26(1)
C(2)	8271(3)	3601(2)	2546(2)	26(1)
C(3)	8543(4)	2696(2)	3010(2)	26(1)
C(4)	8290(3)	2888(2)	3948(2)	26(1)
C(4A)	7872(3)	3989(2)	4459(2)	24(1)
C(5)	7711(3)	4278(2)	5457(2)	26(1)
C(6)	7339(3)	5365(2)	5908(2)	26(1)
C(6A)	7090(3)	6245(2)	5385(2)	24(1)
C(7)	6674(3)	7390(2)	5804(2)	25(1)
C(8)	6371(3)	8185(2)	5264(2)	26(1)
C(9)	6574(3)	7833(2)	4288(2)	25(1)
N(10)	6993(3)	6789(2)	3859(2)	25(1)
C(10A)	7216(3)	5999(2)	4394(2)	25(1)
C(10B)	7652(3)	4835(2)	3914(2)	25(1)
C(10)	6221(4)	8663(2)	3657(2)	25(1)
N(11)	7509(3)	8814(2)	3055(2)	26(1)
C(11)	5170(4)	3430(3)	1118(2)	31(1)
C(12)	3971(4)	3276(3)	170(2)	37(1)
C(12A)	5367(4)	3439(2)	-511(2)	30(1)
C(13)	5087(4)	3531(2)	-1444(2)	33(1)
C(14)	6624(4)	3704(2)	-1935(2)	35(1)
C(15)	8424(4)	3780(2)	-1488(2)	33(1)
C(16)	8742(4)	3668(2)	-555(2)	31(1)
C(16A)	7194(4)	3513(2)	-75(2)	27(1)
C(17)	9368(4)	8404(3)	3084(2)	32(1)
C(18)	10530(4)	9148(2)	2526(2)	30(1)
C(18A)	9052(4)	9594(2)	1963(2)	27(1)
C(19)	9212(4)	10137(2)	1216(2)	30(1)
C(20)	7629(4)	10504(2)	827(2)	31(1)
C(21)	5934(4)	10328(2)	1189(2)	30(1)
C(22)	5750(4)	9786(2)	1939(2)	28(1)
C(22A)	7334(4)	9414(2)	2317(2)	26(1)

Table S24. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å² x 10³) for **3f**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Cl(1)-C(4)	1.738(3)	C(11)-C(12)	1.522(4)
Cl(2)-C(7)	1.726(3)	C(11)-H(11A)	0.9900
O(1)-C(1)	1.230(3)	C(11)-H(11B)	0.9900
O(2)-C(10)	1.235(3)	C(12)-C(12A)	1.498(4)
N(1)-C(2)	1.323(3)	C(12)-H(12A)	0.9900
N(1)-C(10B)	1.354(3)	C(12)-H(12B)	0.9900
N(2)-C(1)	1.349(4)	C(12A)-C(13)	1.381(4)
N(2)-C(16A)	1.416(4)	C(12A)-C(16A)	1.399(4)
N(2)-C(11)	1.492(3)	C(13)-C(14)	1.390(4)
C(1)-C(2)	1.510(4)	С(13)-Н(13)	0.9500
C(2)-C(3)	1.402(4)	C(14)-C(15)	1.386(4)
C(3)-C(4)	1.360(4)	C(14)-H(14)	0.9500
C(3)-H(3)	0.9500	C(15)-C(16)	1.392(4)
C(4)-C(4A)	1.415(3)	C(15)-H(15)	0.9500
C(4A)-C(10B)	1.416(4)	C(16)-C(16A)	1.383(4)
C(4A)-C(5)	1.428(4)	C(16)-H(16)	0.9500
C(5)-C(6)	1.362(4)	C(17)-C(18)	1.537(4)
C(5)-H(5)	0.9500	C(17)-H(17A)	0.9900
C(6)-C(6A)	1.431(4)	C(17)-H(17B)	0.9900
C(6)-H(6)	0.9500	C(18)-C(18A)	1.508(4)
C(6A)-C(10A)	1.414(4)	C(18)-H(18A)	0.9900
C(6A)-C(7)	1.419(3)	C(18)-H(18B)	0.9900
C(7)-C(8)	1.372(4)	C(18A)-C(19)	1.381(4)
C(8)-C(9)	1.408(4)	C(18A)-C(22A)	1.395(4)
C(8)-H(8)	0.9500	C(19)-C(20)	1.395(4)
C(9)-N(10)	1.322(3)	C(19)-H(19)	0.9500
C(9)-C(10)	1.508(4)	C(20)-C(21)	1.385(4)
N(10)-C(10A)	1.352(3)	C(20)-H(20)	0.9500
C(10A)-C(10B)	1.466(3)	C(21)-C(22)	1.386(4)
C(10)-N(11)	1.354(3)	C(21)-H(21)	0.9500
N(11)-C(22A)	1.414(3)	C(22)-C(22A)	1.392(4)
N(11)-C(17)	1.488(3)	C(22)-H(22)	0.9500

Table S25. Bond lengths [Å] and angles [°] for 3f.

C(2)-N(1)-C(10B)	117.4(2)
C(1)-N(2)-C(16A)	126.4(2)
C(1)-N(2)-C(11)	124.0(2)
C(16A)-N(2)-C(11)	109.5(2)
O(1)-C(1)-N(2)	124.7(3)
O(1)-C(1)-C(2)	118.9(2)
N(2)-C(1)-C(2)	116.4(2)
N(1)-C(2)-C(3)	124.0(2)
N(1)-C(2)-C(1)	116.7(2)
C(3)-C(2)-C(1)	119.3(2)
C(4)-C(3)-C(2)	117.9(2)
C(4)-C(3)-H(3)	121.0
C(2)-C(3)-H(3)	121.0
C(3)-C(4)-C(4A)	121.3(2)
C(3)-C(4)-Cl(1)	119.10(19)
C(4A)-C(4)-Cl(1)	119.5(2)
C(4)-C(4A)-C(10B)	115.3(2)
C(4)-C(4A)-C(5)	124.3(2)
C(10B)-C(4A)-C(5)	120.5(2)
C(6)-C(5)-C(4A)	121.2(2)
C(6)-C(5)-H(5)	119.4
C(4A)-C(5)-H(5)	119.4
C(5)-C(6)-C(6A)	120.3(2)
C(5)-C(6)-H(6)	119.9
C(6A)-C(6)-H(6)	119.9
C(10A)-C(6A)-C(7)	115.9(2)
C(10A)-C(6A)-C(6)	120.7(2)
C(7)-C(6A)-C(6)	123.4(2)
C(8)-C(7)-C(6A)	121.2(2)
C(8)-C(7)-Cl(2)	119.5(2)
C(6A)-C(7)-Cl(2)	119.3(2)
C(7)-C(8)-C(9)	117.0(2)
C(7)-C(8)-H(8)	121.5
C(9)-C(8)-H(8)	121.5
N(10)-C(9)-C(8)	124.7(2)
N(10)-C(9)-C(10)	116.1(2)
C(8)-C(9)-C(10)	119.2(2)
C(9)-N(10)-C(10A)	117.6(2)
N(10)-C(10A)-C(6A)	123.6(2)
N(10)-C(10A)-C(10B)	117.5(2)
C(6A)-C(10A)-C(10B)	118.9(2)
N(1)-C(10B)-C(4A)	123.9(2)
N(1)-C(10B)-C(10A)	117.6(2)
---------------------	----------
C(4A)-C(10B)-C(10A)	118.5(2)
O(2)-C(10)-N(11)	124.3(2)
O(2)-C(10)-C(9)	119.4(2)
N(11)-C(10)-C(9)	116.3(2)
C(10)-N(11)-C(22A)	125.7(2)
C(10)-N(11)-C(17)	125.3(2)
C(22A)-N(11)-C(17)	108.9(2)
N(2)-C(11)-C(12)	105.5(2)
N(2)-C(11)-H(11A)	110.6
С(12)-С(11)-Н(11А)	110.6
N(2)-C(11)-H(11B)	110.6
C(12)-C(11)-H(11B)	110.6
H(11A)-C(11)-H(11B)	108.8
C(12A)-C(12)-C(11)	104.2(2)
С(12А)-С(12)-Н(12А)	110.9
С(11)-С(12)-Н(12А)	110.9
C(12A)-C(12)-H(12B)	110.9
C(11)-C(12)-H(12B)	110.9
H(12A)-C(12)-H(12B)	108.9
C(13)-C(12A)-C(16A)	119.5(3)
C(13)-C(12A)-C(12)	130.0(3)
C(16A)-C(12A)-C(12)	110.5(2)
C(12A)-C(13)-C(14)	119.6(3)
С(12А)-С(13)-Н(13)	120.2
С(14)-С(13)-Н(13)	120.2
C(15)-C(14)-C(13)	119.9(3)
C(15)-C(14)-H(14)	120.0
C(13)-C(14)-H(14)	120.0
C(14)-C(15)-C(16)	121.6(3)
C(14)-C(15)-H(15)	119.2
C(16)-C(15)-H(15)	119.2
C(16A)-C(16)-C(15)	117.5(3)
С(16А)-С(16)-Н(16)	121.2
C(15)-C(16)-H(16)	121.2
C(16)-C(16A)-C(12A)	121.8(3)
C(16)-C(16A)-N(2)	128.6(3)
C(12A)-C(16A)-N(2)	109.5(2)
N(11)-C(17)-C(18)	104.6(2)
N(11)-C(17)-H(17A)	110.8
С(18)-С(17)-Н(17А)	110.8
N(11)-C(17)-H(17B)	110.8

C(18)-C(17)-H(17B)	110.8
H(17A)-C(17)-H(17B)	108.9
C(18A)-C(18)-C(17)	103.0(2)
C(18A)-C(18)-H(18A)	111.2
C(17)-C(18)-H(18A)	111.2
C(18A)-C(18)-H(18B)	111.2
C(17)-C(18)-H(18B)	111.2
H(18A)-C(18)-H(18B)	109.1
C(19)-C(18A)-C(22A)	120.4(2)
C(19)-C(18A)-C(18)	129.6(2)
C(22A)-C(18A)-C(18)	110.0(2)
C(18A)-C(19)-C(20)	118.7(3)
С(18А)-С(19)-Н(19)	120.6
С(20)-С(19)-Н(19)	120.6
C(21)-C(20)-C(19)	120.3(3)
С(21)-С(20)-Н(20)	119.8
С(19)-С(20)-Н(20)	119.8
C(20)-C(21)-C(22)	121.7(3)
C(20)-C(21)-H(21)	119.2
C(22)-C(21)-H(21)	119.2
C(21)-C(22)-C(22A)	117.5(3)
C(21)-C(22)-H(22)	121.2
С(22А)-С(22)-Н(22)	121.2
C(22)-C(22A)-C(18A)	121.3(2)
C(22)-C(22A)-N(11)	128.8(2)
C(18A)-C(22A)-N(11)	109.9(2)

U³³ U^{11} U²² U²³ U^{13} U^{12} Atom Cl(1)32(1) 23(1) 31(1) 7(1) 3(1) 8(1) Cl(2)33(1) 27(1)26(1)2(1) 7(1) 8(1) O(1) 31(1) 35(1) 33(1) 7(1) 7(1) 12(1)O(2) 28(1) 30(1) 35(1) 7(1) 7(1) 13(1)N(1) 26(1) 24(1) 25(1) 3(1) 2(1) 6(1) N(2) 7(1) 9(1) 27(1)29(1) 30(1) 4(1) C(1) 29(1) 20(1) 30(1) 3(1) 6(1) 6(1) C(2) 24(1) 24(1) 29(1) 4(1) 3(1) 6(1) C(3) 28(1) 3(1) 7(1) 27(1) 24(1) 3(1) C(4) 31(2) 6(1) 3(1) 6(1) 22(1)25(1) C(4A) 20(1) 23(1) 28(1) 4(1) 2(1) 4(1) C(5) 24(1) 27(1) 6(1) 3(1) 5(1) 26(1) C(6) 24(1)26(1) 27(1) 5(1) 4(1) 6(1) C(6A) 21(1) 24(1) 27(1) 4(1) 3(1) 3(1) C(7) 22(1) 24(1) 29(1) 4(1) 3(1) 4(1) C(8) 24(1) 22(1) 29(1) 2(1) 5(1) 5(1) C(9) 22(1)27(1) 3(1) 3(1) 5(1) 24(1) N(10) 24(1)22(1) 28(1) 4(1) 2(1) 5(1) C(10A) 21(1) 24(1) 27(1) 2(1) 3(1) 4(1) C(10B) 21(1) 27(1) 26(1) 6(1) 3(1) 4(1) C(10) 24(1)23(1) 26(1) 1(1) 3(1) 5(1) 29(1) N(11) 26(1) 22(1) 4(1) 4(1) 7(1) C(11) 33(2) 9(1) 27(1) 33(1) 7(1) 7(1) 36(2) 7(1) C(12) 30(1) 41(2) 1(1) 1(1)C(12A) 34(1) 20(1) 32(2) 2(1) 4(1) 5(1) 5(1) 3(1) C(13) 37(2) 26(1) 34(2) -2(1)C(14) 49(2) 4(1) 25(1) 29(2) 3(1) 6(1) 9(1) C(15) 42(2) 28(1) 31(2) 5(1) 12(1)C(16) 33(1) 31(2) 4(1) 6(1) 10(1)29(1) C(16A) 19(1) 26(1) 2(1) 3(1) 36(1) 7(1) C(17) 26(1) 40(2) 13(1) 7(1) 12(1)35(1) C(18) 25(1) 30(1) 37(2) 8(1) 7(1) 6(1) 27(1) 30(1) 1(1) 5(1) 7(1) C(18A) 22(1) C(19) 33(1) 25(1) 30(2) 3(1) 8(1) 6(1) C(20) 42(2) 25(1) 26(1) 3(1) 6(1) 7(1) C(21) 35(1) 25(1) 29(2) 4(1) 1(1)8(1) C(22) 27(1) 25(1) 30(1) 3(1) 3(1) 7(1) C(22A) 29(1) 27(1) 6(1) 20(1) 1(1)5(1)

Table S26. Anisotropic displacement parameters (Å² x 10³) for **3f**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

Atom	Х	У	Z	U(iso)
H(3)	8894	1972	2679	32
H(5)	7867	3701	5812	31
H(6)	7244	5540	6574	31
H(8)	6040	8939	5537	31
H(11A)	5016	4174	1573	37
H(11B)	4814	2750	1402	37
H(12A)	3204	2473	-34	44
H(12B)	3126	3881	215	44
H(13)	3851	3476	-1748	40
H(14)	6441	3769	-2577	42
H(15)	9466	3913	-1826	40
H(16)	9976	3696	-259	37
H(17A)	9237	7543	2777	39
H(17B)	9963	8551	3750	39
H(18A)	11396	9818	2964	36
H(18B)	11265	8651	2098	36
H(19)	10379	10258	972	35
H(20)	7713	10876	312	37
H(21)	4871	10585	916	36
H(22)	4585	9673	2187	34

Table S27. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for 3f.

Table S28. Torsion angles [°] for 3f.

C(16A)-N(2)-C(1)-O(1)	-7.1(4)
C(11)-N(2)-C(1)-O(1)	169.5(2)
C(16A)-N(2)-C(1)-C(2)	170.7(2)
C(11)-N(2)-C(1)-C(2)	-12.7(4)
C(10B)-N(1)-C(2)-C(3)	1.6(4)
C(10B)-N(1)-C(2)-C(1)	-174.8(2)
O(1)-C(1)-C(2)-N(1)	115.4(3)
N(2)-C(1)-C(2)-N(1)	-62.6(3)
O(1)-C(1)-C(2)-C(3)	-61.2(3)
N(2)-C(1)-C(2)-C(3)	120.9(3)
N(1)-C(2)-C(3)-C(4)	1.3(4)
C(1)-C(2)-C(3)-C(4)	177.6(2)
C(2)-C(3)-C(4)-C(4A)	-3.6(4)
C(2)-C(3)-C(4)-Cl(1)	176.23(19)
C(3)-C(4)-C(4A)-C(10B)	2.9(4)
Cl(1)-C(4)-C(4A)-C(10B)	-176.89(18)
C(3)-C(4)-C(4A)-C(5)	-175.7(2)
Cl(1)-C(4)-C(4A)-C(5)	4.5(4)
C(4)-C(4A)-C(5)-C(6)	178.8(2)
C(10B)-C(4A)-C(5)-C(6)	0.2(4)
C(4A)-C(5)-C(6)-C(6A)	0.3(4)
C(5)-C(6)-C(6A)-C(10A)	0.3(4)
C(5)-C(6)-C(6A)-C(7)	179.1(2)
C(10A)-C(6A)-C(7)-C(8)	1.6(4)
C(6)-C(6A)-C(7)-C(8)	-177.3(2)
C(10A)-C(6A)-C(7)-Cl(2)	-177.78(18)
C(6)-C(6A)-C(7)-Cl(2)	3.4(3)
C(6A)-C(7)-C(8)-C(9)	-2.7(4)
Cl(2)-C(7)-C(8)-C(9)	176.63(19)
C(7)-C(8)-C(9)-N(10)	1.4(4)
C(7)-C(8)-C(9)-C(10)	178.9(2)
C(8)-C(9)-N(10)-C(10A)	1.1(4)
C(10)-C(9)-N(10)-C(10A)	-176.4(2)
C(9)-N(10)-C(10A)-C(6A)	-2.3(4)
C(9)-N(10)-C(10A)-C(10B)	179.1(2)
C(7)-C(6A)-C(10A)-N(10)	1.1(4)
C(6)-C(6A)-C(10A)-N(10)	179.9(2)
C(7)-C(6A)-C(10A)-C(10B)	179.6(2)
C(6)-C(6A)-C(10A)-C(10B)	-1.5(4)
C(2)-N(1)-C(10B)-C(4A)	-2.3(4)

C(2)-N(1)-C(10B)-C(10A)	177.8(2)
C(4)-C(4A)-C(10B)-N(1)	0.1(4)
C(5)-C(4A)-C(10B)-N(1)	178.8(2)
C(4)-C(4A)-C(10B)-C(10A)	180.0(2)
C(5)-C(4A)-C(10B)-C(10A)	-1.3(4)
N(10)-C(10A)-C(10B)-N(1)	0.5(3)
C(6A)-C(10A)-C(10B)-N(1)	-178.2(2)
N(10)-C(10A)-C(10B)-C(4A)	-179.4(2)
C(6A)-C(10A)-C(10B)-C(4A)	2.0(4)
N(10)-C(9)-C(10)-O(2)	130.1(3)
C(8)-C(9)-C(10)-O(2)	-47.5(4)
N(10)-C(9)-C(10)-N(11)	-48.2(3)
C(8)-C(9)-C(10)-N(11)	134.1(2)
O(2)-C(10)-N(11)-C(22A)	-7.5(4)
C(9)-C(10)-N(11)-C(22A)	170.8(2)
O(2)-C(10)-N(11)-C(17)	170.7(3)
C(9)-C(10)-N(11)-C(17)	-11.1(4)
C(1)-N(2)-C(11)-C(12)	-170.0(2)
C(16A)-N(2)-C(11)-C(12)	7.1(3)
N(2)-C(11)-C(12)-C(12A)	-8.6(3)
C(11)-C(12)-C(12A)-C(13)	-171.7(3)
C(11)-C(12)-C(12A)-C(16A)	7.5(3)
C(16A)-C(12A)-C(13)-C(14)	-0.4(4)
C(12)-C(12A)-C(13)-C(14)	178.8(3)
C(12A)-C(13)-C(14)-C(15)	0.1(4)
C(13)-C(14)-C(15)-C(16)	1.1(4)
C(14)-C(15)-C(16)-C(16A)	-2.0(4)
C(15)-C(16)-C(16A)-C(12A)	1.7(4)
C(15)-C(16)-C(16A)-N(2)	-174.1(2)
C(13)-C(12A)-C(16A)-C(16)	-0.6(4)
C(12)-C(12A)-C(16A)-C(16)	-179.9(2)
C(13)-C(12A)-C(16A)-N(2)	176.0(2)
C(12)-C(12A)-C(16A)-N(2)	-3.3(3)
C(1)-N(2)-C(16A)-C(16)	-9.3(4)
C(11)-N(2)-C(16A)-C(16)	173.7(3)
C(1)-N(2)-C(16A)-C(12A)	174.5(2)
C(11)-N(2)-C(16A)-C(12A)	-2.5(3)
C(10)-N(11)-C(17)-C(18)	-160.7(2)
C(22A)-N(11)-C(17)-C(18)	17.7(3)
N(11)-C(17)-C(18)-C(18A)	-18.4(3)
C(17)-C(18)-C(18A)-C(19)	-167.8(3)
C(17)-C(18)-C(18A)-C(22A)	13.7(3)

C(22A)-C(18A)-C(19)-C(20)	0.2(4)
C(18)-C(18A)-C(19)-C(20)	-178.1(3)
C(18A)-C(19)-C(20)-C(21)	0.2(4)
C(19)-C(20)-C(21)-C(22)	-0.2(4)
C(20)-C(21)-C(22)-C(22A)	-0.4(4)
C(21)-C(22)-C(22A)-C(18A)	0.9(4)
C(21)-C(22)-C(22A)-N(11)	-178.0(2)
C(19)-C(18A)-C(22A)-C(22)	-0.8(4)
C(18)-C(18A)-C(22A)-C(22)	177.8(2)
C(19)-C(18A)-C(22A)-N(11)	178.2(2)
C(18)-C(18A)-C(22A)-N(11)	-3.1(3)
C(10)-N(11)-C(22A)-C(22)	-12.2(4)
C(17)-N(11)-C(22A)-C(22)	169.4(3)
C(10)-N(11)-C(22A)-C(18A)	168.8(2)
C(17)-N(11)-C(22A)-C(18A)	-9.5(3)

Table S29. Hydrogen bonds for 3f [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
С(8)-H(8)О(2)#1	0.95	2.45	3.397(3)	177.7
C(11)-H(11B)Cl(2)#2	0.99	2.75	3.580(3)	141.9
C(16)-H(16)O(1)	0.95	2.41	2.949(4)	115.9
C(17)-H(17B)Cl(1)#3	0.99	2.77	3.729(3)	163.4
C(18)-H(18A)Cl(2)#4	0.99	2.97	3.780(3)	139.7
C(22)-H(22)O(2)	0.95	2.42	2.939(3)	114.5

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+2,-z+1 #2 -x+1,-y+1,-z+1 #3 -x+2,-y+1,-z+1 #4 -x+2,-y+2,-z+1

Atoms	Bond (Å) / angle (°)	Atoms	Angle (°)	
1·DMF·H ₂ O				
C11–O1	1.218(2)	N1C2C11O1	-4.3(2)	
C11–O2	1.302(2)	N1C2C11O2	176.0(1)	
C12–O3	1.211(2)	N10-C9-C12-O4	8.52(2)	
C12–O4	1.306(2)	N10-C9-C12-O3	-170.3(1)	
	3:	a		
C101	1.220(3)	C2C1N2C11	11.5(3)	
C1-N2	1.328(3)	O1C1C2C3	45.4(3)	
C10–O2	1.223(3)	N2C1C2N1	49.9(3)	
C10–N11	1.333(3)	C9-C10-N11-C20	-9.7(3)	
C11–N2–C14	111.7(2)	O2-C10-N11-C17	-2.0(3)	
C17–N11–C20	110.8(2)	N10-C9-C10-N11	-39.1(3)	
O1C1N2C14	-0.3(3)	C8–C9–C10–O2	-35.4(3)	
	3b∙I	I ₂ O		
C1–O1	1.245(3)	C2C1N2C11	8.7(4)	
C1–N2	1.341(3)	O1–C1–C2–C3	41.2(3)	
C10–O2	1.222(3)	N2-C1-C2-N1	45.9(3)	
C10–N11	1.332(3)	C9-C10-N11-C21	12.4(4)	
C11–N2–C15	113.3(2)	O2-C10-N11-C17	-6.5(4)	
C17–N11–C21	112.9(2)	N10-C9-C10-N11	-88.7(3)	
O1C1N2C15	0.4(4)	C8–C9–C10–O2	-81.8(3)	
3f				
C1–O1	1.230(3)	C2C1N2C11	-12.7(4)	
C1-N2	1.349(4)	N2-C1-C2-N1	-62.6(3)	
C10–O2	1.235(3)	O1–C1–C2–C3	-61.2(3)	
C10–N11	1.354(3)	O2-C10-N11-C22A	-7.5(4)	
C11-N2-C16A	109.5(2)	C9–C10–N11–C17	-11.1(4)	
C17-N11-C22A	108.9(2)	N10-C9-C10-N11	-48.2(4)	
01–C1–N2–C16A	-7.1(4)	C8–C9–C10–O2	-47.5(3)	

Table S30. Selected bond	l lengths and ang	es in crystal structures of	f 1 · DMF · H₂O , 3 a, 3	$3b \cdot H_2O$ and $3f$.
--------------------------	-------------------	-----------------------------	---	----------------------------

Appendix A.

Table S31. ¹³C NMR chemical shifts for C=O carbon atoms and absorption maxima of the band of valence vibrations of C(O) groups in the IR spectra of compounds **3a-c** and **3f-g** in crystalline state and solutions.

Compound	NMR ¹³ C (CDCl ₃), $\delta_{\underline{C}=0}$, ppm	$\nu_{C=O max}$ in solid, cm ⁻¹	$v_{C=O max}$ in CCl ₄ , cm ⁻¹
3a	164.9	1622	1634
3b	166.0	1627	1638
3c	167.6	1631	1636
3f	164.6	1639	1649
3g	166.9	1638	1647
3h	N/A	1674	1674

References

- 1 T. G. Battye, L. Kontogiannis, O. Johnson, H. R. Powell, A. G. W. Leslie. *Acta Cryst.* **2011**, *D67*, pp. 271–281, <u>http://dx.doi.org/10.1107/S0907444910048675</u>
- 2 P. Evans. Acta Cryst. 2006, D62, pp. 72-82, https://doi.org/10.1107/S0907444905036693
- 3 a) G. M. Sheldrick. *Acta Cryst.* **2015**, *C71*, pp. 3–8, <u>https://doi.org/10.1107/S2053229614024218</u>; b) G.M. Sheldrick. *Acta Cryst.* **2015**, *A71*, pp. 3–8, <u>https://doi.org/10.1107/S2053273314026370</u>