Supplementary Information

Density functional study on the CO oxidation reaction mechanism on MnN₂-doped graphene

Mingming Luo^a, Zhao Liang^a, Chao Liu^{a,*}, Xiaopeng Qi^a, Mingwei Chen^a, Hui

Yang^a, Tongxiang Liang^{a,*}

^a Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and

Technology, Ganzhou 341000, China

* Corresponding Authors.

E-mail address: <u>liuchao198967@126.com</u> (Chao Liu) and <u>liang_tx@126.com</u> (Tongxiang Liang).

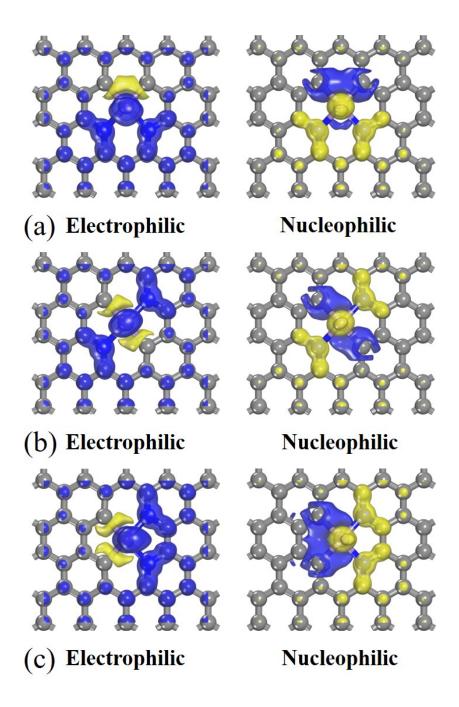


Fig. S1 The Fukui function of (a) MnN_2C_2 -hex, (b) MnN_2C_2 -opp and (c) MnN_2C_2 -pen, the isosurface value is 3 e/Å³.

	MnN ₂ C ₂ -hex	MnN ₂ C ₂ -opp	MnN ₂ C ₂ -pen
CO ₂	-0.292	-0.270	-0.260
CO	-1.448	-1.318	-1.424
O_2	-1.778	-1.975	-1.655

Table S1 The adsorption energy (eV) of gas on MnN₂C₂.

CO+O ₂	-2.490	-2.283	-2.327
2CO	-2.423	-2.524	-2.395

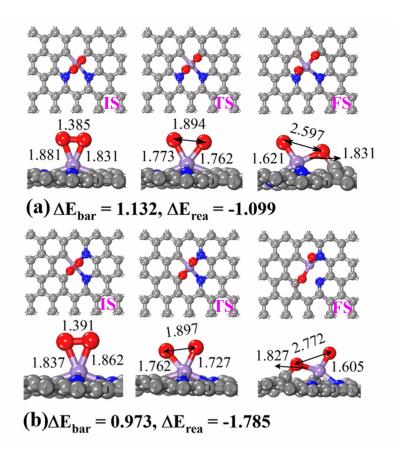


Fig. S2 Structure of O₂ decomposition reaction on (a) MnN_2C_2 -hex and (b) MnN_2C_2 pen. ΔE_{bar} represents reaction barrier (eV) and ΔE_{rea} represents reaction energy (eV).

Table S2 The energy barriers and reaction energies of CO oxidation along the ER mechanism. ΔE_{bar} represents reaction barrier (eV) and ΔE_{rea} represents reaction energy (eV).

Model	Reaction	$\Delta E_{bar}(eV)$	$\Delta E_{rea}(eV)$
MnN ₂ C ₂ -hex	$CO_3 \rightarrow O+CO_2$	0.704	-0.193
	$O_2 + CO \rightarrow O + CO_2$	1.101	-3.620
MnN ₂ C ₂ -opp	$CO_3 \rightarrow O+CO_2$	0.961	-0.126

	O_2 +CO \rightarrow O+C O_2	0.544	-3.611
MnN ₂ C ₂ -pen	$CO_3 \rightarrow O+CO_2$	1.110	-0.334
	O_2 +CO \rightarrow O+C O_2	0.950	-3.761

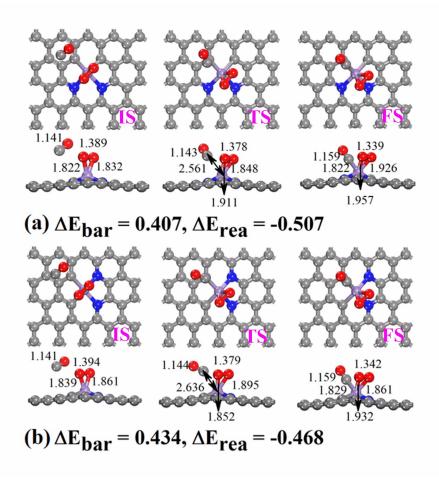


Fig. S3 Structure of the CO + $*O_2 \rightarrow *CO + *O_2$ reaction on (a) MnN₂C₂-hex and (b) MnN₂C₂-pen. ΔE_{bar} represents reaction barrier (eV) and ΔE_{rea} represents reaction energy (eV).

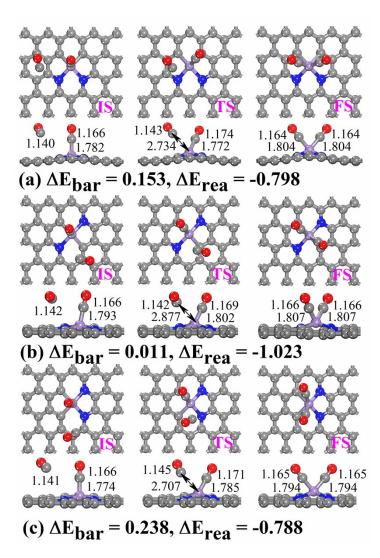


Fig. S4 The second CO is adsorbed on the Mn atom to form structure of two CO coadsorption on (a) MnN_2C_2 -hex, (b) MnN_2C_2 -opp and (c) MnN_2C_2 -pen. ΔE_{bar} represents reaction barrier (eV) and ΔE_{rea} represents reaction energy (eV).

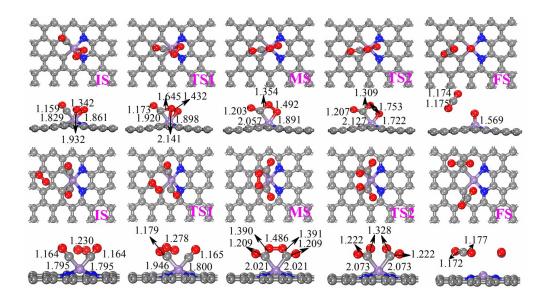


Fig. S5 Structure of the oxidation of CO on MnN_2C_2 -pen along the LH and TER mechanisms.

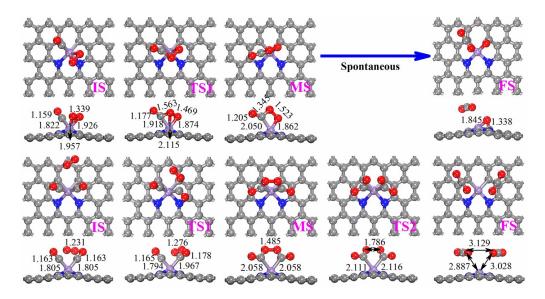


Fig. S6 Structure of the oxidation of CO on MnN_2C_2 -hex along the LH and TER mechanisms.

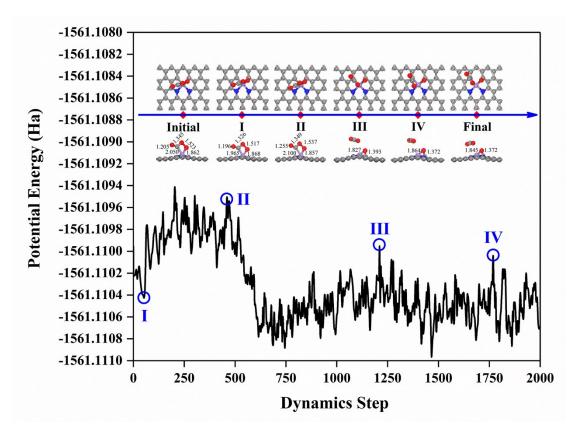


Fig. S7 Molecular dynamics trajectory of intermediate product OCOO spontaneously decomposes into O and CO₂ on MnN_2C_2 -hex at 350 K with snapshots of intermediates at different times.