Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Extraction of Pd(II) and Pt(II) from aqueous hydrochloric acid with 1,3-diaminocalix[4]arene: Switching of the extraction selectivity by using different extraction modes

Naoya Morohashi,* Yu Kurusu, Kosuke Akasaka and Tetsutaro Hattori*

Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-Aoba, Aoba-ku, Sendai 980-8579, Japan

Contents:

I.	Solvent extraction	
II.	¹ H and ¹³ C NMR of synthesized metal complexes	
		S6

I. Solvent extraction

[HCl]/M	<i>E</i> % [Pt(IV)]	<i>E</i> % [Rh(III)]	<i>E</i> % [Ir(IV)]
0.001	8	6	37
0.01	44	14	30
1	57	23	30
4	10	33	19
7	5	14	21

Table S1 Dependence of E% on [HCl] for the extraction of Pt(IV), Rh(III) and Ir(IV) with compound 2.

Aq. phase: $[Metal]_{aq,init} = 1.0 \times 10^{-4} \text{ M}$. Org. phase: CHCl₃, $[\mathbf{2}]_{org,init} = 1.0 \times 10^{-3} \text{ M}$.

Table S2 Dependence of E% on [HCl] for the extraction of Pd(II), Pt(II), Pt(IV), Rh(III) and Ir(IV) with compound **3**.

[HCl]/M	<i>E</i> % [Pd(II)]	<i>E</i> % [Pt(II)]	<i>E</i> % [Pt(IV)]	<i>E</i> % [Rh(III)]	<i>E</i> % [Ir(IV)]
0.001	19	0	3	8	15
0.01	23	15	18	12	8
1	17	16	14	15	12
4	12	10	8	12	14
7	9	8	13	10	20

Aq. phase: $[Metal]_{aq,init} = 1.0 \times 10^{-4} \text{ M}$. Org. phase: $CHCl_3$, $[\mathbf{3}]_{org,init} = 1.0 \times 10^{-3} \text{ M}$.

Fig. S1 Dependence of *E*% on [H⁺] for the extraction of Pt(II) with compound **2**. Aq. phase: $[Metal]_{aq,init} = 1.0 \times 10^{-4} \text{ M}, [Cl⁻] = 0.04 \text{ M}. [H⁺] and [Cl⁻] was adjusted by the addition of HCl and LiCl. Org. phase: CHCl₃, [$ **2**]_{org,init} = 1.0×10⁻³ M.

Fig. S2 Partial ¹H NMR spectra of CDCl₃ solution of compound **2** before (a) and after (b) extraction of Pd(II). Condition for solvent extraction: Aq. phase: $[Pd(II)]_{aq,init} = 1.0 \times 10^{-3}$ M, [HCl] = 0.001 M. Org. phase: CDCl₃, $[\mathbf{2}]_{org,init} = 1.0 \times 10^{-3}$ M.

Fig. S3 Dependence of E% on [Br⁻] for the extraction of Pd(II) (a) and Pt(II) (b) with compound **2**. Aq. phase: [Metal]_{aq,init} = 1.0×10^{-4} M, [HCl] = 0.5 M. [Br⁻] was adjusted by the addition of KBr. Org. phase: CHCl₃, [**2**]_{org,init} = 1.0×10^{-3} M.

Fig. S4 Dependence of E% on $[NO_3^-]$ for the extraction of Pd(II) (a) and Pt(II) (b) with compound **2**. Aq. phase: $[Metal]_{aq,init} = 1.0 \times 10^{-4} \text{ M}$, [HCl] = 0.5 M. $[NO_3^-]$ was adjusted by the addition of LiNO₃. Org. phase: CHCl₃, $[\mathbf{2}]_{org,init} = 1.0 \times 10^{-3} \text{ M}$.

II. ¹H and ¹³C NMR of synthesized metal complexes

1. [PdL]

Fig. S5 ¹H NMR spectrum of [PdL] (CDCl₃, 400 MHz).

Fig. S6 ¹³C NMR spectrum of [PdL] (CDCl₃, 100 MHz).

2. [Pt₂Cl₆(H₃L)₂]

Fig. S7 ¹H NMR spectrum of [Pt₂Cl₆(H₃L)₂] (CDCl₃, 400 MHz).

Fig. S8 ¹³C NMR spectrum of [Pt₂Cl₆(H₃L)₂] (CDCl₃, 100 MHz).