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1. Materials
All reagents and solvents (analytical grade and spectroscopic grade) were obtained from Merck (India) and

Spectrochem Pvt. Limited (India) and were used without further purification. The required starting
materials, 8-formyl-7-hydroxy-4-methyl coumarin,!'l coumarin hydrazidel? (1) and fluorescein hydrazide!®]
(2) were prepared according to the literature procedures published earlier. The dyad R3 was synthesized by
condensation reaction of 8-formyl-7-hydroxy-4-methyl coumarin with fluorescein hydrazide (2) according
to Scheme S1. Anions such as F~, CI", Br, I', H,PO,”, HSO,  and AcO™ were used in the form of their
tetrabutylammonium (TBA) salts whereas CN  and S?"were used as KCN and Na,S salt respectively to
study the anion binding properties of dyad R3. All the binding studies were carried out in acetonitrile (AcN)
solvent medium at 10 pM concentration of R3. The various equivalents of guest anions were added from
their respective stock solutions varying from 1.0 to 0.1 mM prepared in AcN medium. For CN  and S?” ions,
the stock solutions were prepared in UV-grade DMSO.

2. General methods
'H NMR was recorded on an Avance I1I-400 MHz Bruker spectrometer. Chemical shifts are reported in

parts per million (ppm) from tetramethylsilane with the solvent (DMSO-ds: 2.5 ppm) resonance as the
internal standard. Data are reported as follows: chemical shifts, multiplicity (s = singlet, d = doublet, t =
triplet, m = multiplet), coupling constant (J in Hz).!3C NMR (100 MHz) spectra were recorded on an
Avance I11-400 MHz Bruker spectrometer in proton decoupling mode. Chemical shifts are reported in ppm
from tetramethylsilane with the solvent resonance as the internal standard (DMSO-ds: 39.51 ppm). UV—
visible absorption spectra were recorded on a Shimadzu UV-2450 spectrophotometer. Fluorescence
emission spectra were recorded on a Hitachi F-7000 fluorescence spectrophotometer. FTIR spectra were
recorded on Eco-ATR, Alpha, Bruker Optik GmbH, Ettlingen, Germany. Mass spectrum was measured on
Xevo G2S QTof Mass analyser (Waters). Elemental analysis was carried out by using Elementar Vario EL
III CHNS. Chromatographic purification was done using 60—120 mesh silica gels (Merck). For reaction
monitoring, manually coated silica gel-60 TLC plates were used.

3. Experimental method for UV-Visible and Fluorescence studies of dyad R3 with anions
For UV-visible experiments, 10 uM concentration of R3 was prepared from its stock solution (I mM) in

acetonitrile (AcN) medium. Anion selectivity study was conducted by addition of 10.0 equivalents of
various anions individually to a 10 uM solution of R3. The spectrophotometry titrations were carried by
gradual addition of various equivalents of fluoride ion through a micro pipette to a 2 mL (10 uM in AcN
medium) solution of R3 taken in a cuvette and the absorption and emission spectra were recorded.

4. Experimental method for "TH NMR titration experiments
A 5.0 mM solution of dyad R3 was prepared in DMSO-ds. Various equivalents of tetrabutylammonium

fluoride (from a stock solution of 10 mM in DMSO-d;) were added to 0.5 mL of dyad solution in an NMR

tube through a micro pipette and the '"H NMR spectra were recorded after each addition.
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Scheme S1. Synthesis protocol for compounds 1, 2, and R3.

5. General procedure for synthesis of dyad R3

The dyad R3 was synthesised as per the synthetic protocol given in Scheme S1. A solution of fluorescein
hydrazide (2) (0.38 g, 1.0 mmol) in 20 mL of absolute ethanol was taken in a 50 mL round bottom flask. To
this solution, 1.5 mmol of 8-formyl-7-hydroxy-4-methyl coumarin (0.306 g) dissolved in 10 mL of absolute
ethanol was added slowly in drop wise manner under stirring condition at room temperature. Then the
reaction mixture was refluxed in an oil bath for 8 hours till completion of the starting materials as monitored
by thin layer chromatography. After cooling of the reaction mixture, the precipitate thus obtain was filtered
under vacuum and subsequently washed for three times with 20 mL ethanol to remove any remaining
unreacted starting materials. Then the product was dried under reduced pressure and further purified by

recrystallization from acetonitrile solvent to afford R3 in more than 80% yields.

6. Characterization data for dyad R3

White Powder (Yield: 81%) MP: 338°C. 'H NMR (400 MHz, DMSO-dy) J (ppm) 2.39 (3H, s, -CH3), 6.26
(s, IH, Coumarin ring-H), 6.52 (d, J = 8Hz, 2H, Xanthene-H), 6.61 (d, J = 8Hz, 2H, Xanthene-H), 6.71 (s,
2H, Xanthene-H), 6.85 (d, J = 8Hz, 1H, Ar-H), 7.22 (d, J = 8Hz, 1H, Ar-H), 7.69 (m, 3H, Ar-H), 8.02 (d, J
= 8Hz, 1H, Ar-H), 9.70 (s, 1H, -N=CH), 10.05 (s, broad, 2H, Xanthene-OH), 11.57 (s, broad, 1H, Coumarin
-OH). 3C NMR (100 MHz, DMSO-d¢) ¢ (ppm) 18.2, 55.7, 114.9, 123.9, 126.8, 127.1, 128.6, 128.9, 129.1,
129.1, 130.2, 130.4, 131.5, 144.4, 147.0, 159.6, 165.1. FTIR (KBr) v(cm™) 3400-2700 broad (-OH), 1721
(>C=N), 1620, 1575, 1487, 1448, 1273, 1203, 1111, 1031, 979, 896, 755, 680, 561, 459. ESI-MS m/z: calcd
for C51H,0N,0O7 [M+H]": 533.12; found, 533.02. Elemental analysis: C3;H,(N,O7: caled. C 69.92, H 3.79, N
5.26; found: C 69.80, H 3.91, N 5.15%.
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Fig. S1. '"H NMR spectrum of R3 in DMSO-d.
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Fig. S2. 3C NMR spectrum of R3 in DMSO-d.
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Fig. S3. FTIR spectrum (in KBr) of R3.
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Fig. S4. ESI mass spectrum of R3.
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Fig. S5. (a) Absorption spectra of 10 uM solution of dyad R3 with excess of F~ ions (10 equiv.) (b)
Absorption spectra of 10 uM solution of coumarin component (1, CH) and fluorescein component (2, FHZ)

with excess of F~ ions (10 equiv.).
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Fig. S6. Emission spectra of 10 uM solution of dyad R3 (yellow colour), Fluorescein component (2, FHZ)
(blue colour) and equimolar (10 uM each) mixture of coumarin component (1, CH) and fluorescein
component (2, FHZ) (green colour) in the presence of F~ ions (10 equiv.). Inset shows I/ at their respective
Iax in absence (Ip) and presence (I) of F~ ions. Inset also shows a visual fluorescence colour change in dyad
R3, component 2 and equimolar mixture (1+2) with fluoride ion under UV-light at 365 nm. A, = 376 nm.
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Fig. S7. (a) Change in fluorescence intensity at 548 nm and 450 nm in dyad R3 (10 uM) against various
equivalents of fluoride ion. Insets show the change in fluorescence intensity at 548 nm and 450 nm in dyad
R3 between 0.0-1.0 equivalent and 2.0-5.0 equivalents of fluoride ions. (b) Ratio of fluorescence intensity

(Is48/1450) against various equivalents of fluoride ion.
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Fig. S8. Job’s plot of R3 with F~ions determined from UV-visible (Ap, = 524 nm) and fluorescence (Aey, =
548 nm; Ae = 376 nm) experiments at 298 K.
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Fig. S9. Calculation of limit of detection (LOD) of R3 for F~ ion from (a) UV-visible method, (b)

Fluorescence method.
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Fig. S10. Optimized structures of dyad R3, various R3-fluoride intermediates (A, B, C, D, E) and
deprotonated product P (colour key: grey = carbon; blue = nitrogen; red = oxygen; cyan = fluorine). Eacn
indicates the calculated total energy in acetonitrile solvent. Eg,; indicates the relative energy of the species

calculated (from Table S1) with respect to dyad R3 in acetonitrile solvent.
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Table S1. Calculated relative energy of species A, B, C, D, E and P (refer Scheme 2 of main article) with
respect to the energy of dyad R3.

Relative
Species DFT E{lerg).f (in e:s:szczvti(t)h Rer.narks .
atomic unit) R3 (method of calculation of relative energy)

(kcal/mol)

R3 -1829.05873084 0 Reference

A -1929.08908962 -19.0 (Energy of A) — (Energy of F)

B -1929.08444269 -16.1 (Energy of B) — (Energy of F)

C -2029.11273075 -33.9 (Energy of C) — (2xEnergy of F)

D -1828.59389167 -26.6 (Energy of D) + (Energy of HF,") — (2xEnergy of F)

E -1828.55845112 -4.3 (Energy of E) + (Energy of HF,") — (2xEnergy of F-)

T el I [

fFI“)Oride on | 9999997769

if?ﬁ;‘f‘; -200.50716628

Table S2. Comparison of experimental and computed absorption bands of dyad R3

and product P.
Experimental | Calculated | Oscillator
Complex | Wavelength | Wavelength | strength Orbital Contribution
(nm) (nm) (1))
Product P 524 491 0.02 H-2 2L, H>L
H-8-2>L, H-52L, H-4>L, H>L+2,
Product P 375 370 0.49 HSL+7
Product P 326 0.61 H-5-> L, H>L+2, H>L+2, H>L+5
R3 326 297 0.73 H-3-2>L, H-3-2>L+1, H>L
H-3->L, H-3-> L+1,H -2->L, H-
R3 271 284 0.30 2>L+1. HSL
H-9->L, H-2->L, H-2->L+1, H-
R3 280 018 | a3Li2, HaSLH, HSL
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Fig. S11. Frontier molecular orbitals of dyad R3.
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Fig. S12. Frontier molecular orbitals of product P (refer Scheme 2 of main article).
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