Supporting information

Redox and Structural Properties of Accessible Actinide(II) Metallocalixarene (Ac to Pu): a Relativistic DFT Study

Shuai Niu,§ Hong-Xue Cai,§ Hong-Bo Zhao, Li Li and Qing-Jiang Pan*

Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China

Corresponding author

*Email: panqjitc@163.com (QJP)

ORCID

Qing-Jiang Pan: 0000-0003-2763-6976

Author Contribution

[§] The two authors contributed to the work equally.

Discussion on isomers and effects of different levels of theory on structures

Regarding cases that valence electrons may be singly or doubly filled into frontier molecular orbitals, divalent and trivalent actinide complexes have different electronspin state (ESS) for their ground state. Herein, we fully optimized U(II) and U(III) complexes of L^n at the level of theory Pri: PBE/B-I/gas. As seen in Table S1, the calculated relative energies show that the highest ESS is the energy-lowest among isomers for all the U(III) complexes, which is consistent with previous studies.¹⁻⁹

Most divalent complexes give the same manner, for example $L^2 \sim L^4$ ones. $[UL^1]^-$ is exceptional with the triplet ground state. So we further optimized structures of $[AnL^1]^-$ (An = Th~Pu) in all possible ESSs. Calculated energies (Table S2) show single, doublet, triplet, quartet and heptet *ground* state, respectively. Therefore, the highest ESS was centered on for all complexes with the exception of $[AnL^1]^-$ in the work.

Considering possible geometric isomers, we took $[UL^2]$ as an example. Three energetically stable isomers, labeled as $[UL^2]$, $[UL^2]'$ and $[UL^2]''$ (Figure 1), were found. Energetic comparison shows that $[UL^2]$ is the energy-lowest. Geometric parameters were presented in Table S4. Additionally, a larger basis set B-IV (see details in the footnote of Table S4) was used for optimization. Comparison indicates the smaller basis set B-I is sufficiently reliable for current calculations.

Unless otherwise noted, the level of theory, Pri: PBE/B-I/gas, was used for all structural optimizations. And thus, single-point calculations were conducted using ADF and Gaussian codes to obtain solvation/spin-orbit coupling energies and QTAIM-related parameters, respectively. To very this, we optimized structures of $[AnL^2]^z$ (An = Th, Pa, U and Np; z = 0 and +1) at the level of ADF: PBE/B-II/gas. Slight differences were found for geometric parameters, electron-spin density and atomic charges as seen in Tables S5~S8. Further considering the spin-orbit coupling effects using the ADF code, $[UL^2]$ was chosen and optimized, which shows close results to those at the scalar level (Table S4).

Figure S1. Plots of various energies of the single-electron reaction $[AnL^2]^+ + e = [AnL^2]$ (An = Ac~Pu). For convenient comparison, their minus values were used.

Figure S2. Total DOSs of $[AnL^2]$ (An = Ac~Pu), where the α -spin orbitals are plotted and HOMO of each complex is marked with a star.

Figure S3. Density of states (DOSs) of each fragment of $[AnL^2]^+$ (An = Ac~Pu), where the α -spin orbitals are plotted except for close-shell $[AcL^2]^+$, and HOMO of each complex is marked with a star.

Figure S4. Total DOSs of $[AnL^2]^+$ (An = Ac~Pu), where the α -spin orbitals are plotted except for close-shell $[AcL^2]^+$, and HOMO of each complex is marked with a star.

Discussion about the density-functional and geometry effects on electronic configuration of the U(II) center

The electronic configuration of the U(II) center in complex uranium could be density functional-dependent and geometry dependent. To consider the former, different functionals (GGA-PBE, hybrid PBE0, and hybrid B3LYP) implemented in the ADF code were used to calculate the complex [UL²] at the Priroda-optimized geometry. Regarding the latter issue, we used Priroda and ADF codes to optimize the structure of [UL²]. At these two geometries, the level of theory, ADF: PBE/B-II/ZORA/THF, was exploited to calculate electronic structures of [UL²].

The inspection of high-lying uranium-based orbitals (Figures S5 and S6) and orbital compositions finds two pure 5f-character orbitals and two δ (U-Ar) bonding ones, regardless of what density functionals (GGA and Hybrid) and geometries (Priroda and ADF) are used. One can note that geometry change has almost no effect. Regarding different density functionals, the order of orbitals with different character is affected (Figure S5). However, the 5f⁴ electronic configuration for U(II) was obtained by all density functionals, but a little more 6d participation was found in the hybrid results.

Figure S5. Four high-lying metal-based α-spin orbitals of [UL²] calculated by ADF: DFT/TZP/ZORA/COSMO level, where density functionals are PBE (left), PBE0 (middle) and B3LYP (right).

Figure S6. Four high-lying metal-based α -spin orbitals of [UL²] calculated by ADF: PBE/TZP/ZORA/COSMO at Priroda-optimized (left) and ADF-optimized (right) geometries.

Complexes	ESS	ΔE^{a}	ΔE_0^{a}	ΔH^{a}	ΔG^{a}
[UL ¹]-	Singlet	0.164	0.176	0.165	0.255
	Triplet	0.000	0.000	0.000	0.000
	Quintet	0.059	0.086	0.082	0.086
$[UL^2]$	Singlet	0.508	0.485	0.489	0.483
	Triplet	0.116	0.101	0.104	0.095
	Quintet	0.000	0.000	0.000	0.000
[UL ³] ⁻	Singlet	1.041	0.987	0.987	0.987
	Triplet	0.413	0.405	0.406	0.406
	Quintet	0.000	0.000	0.000	0.000
$[UL^4]^{2-}$	Singlet	0.713	0.697	0.696	0.707
	Triplet	0.036	0.035	0.033	0.044
	Quintet	0.000	0.000	0.000	0.000
$[UL^1]$	Doublet	0.294	0.248	0.261	0.199
	Quartet	0.000	0.000	0.000	0.000
$[UL^{2}]^{+}$	Doublet	0.343	0.328	0.328	0.333
	Quartet	0.000	0.000	0.000	0.000
[UL ³]	Doublet	0.520	—	—	—
	Quartet	0.000	0.000	0.000	0.000
$[UL^{4}]^{-}$	Doublet	0.424	0.420	0.417	0.425
	Quartet	0.000	0.000	0.000	0.000

Table S1. Calculated relative energies (eV) of uranium complexes of various ligands (L^n , $n = 1 \sim 4$) in all possible electron-spin states (ESSs).

^a The total energy (E), the total energy including zero-point vibrational energy (E₀) and the free energy correction (G); and ΔE , ΔE_0 and ΔG denote the relative energy with respect to the lowest-energy isomer.

Complexes	ESS	ΔΕ	ΔE_0	ΔH	ΔG
$[ThL^1]^-$	Singlet	0.000	0.000	0.000	0.000
	Triplet	0.154	0.149	0.177	0.096
$[PaL^1]^-$	Doublet	0.000	0.000	0.031	0.000
	Quartet	0.376	0.405	0.407	0.344
$[UL^1]^-$	Singlet	0.164	0.176	0.165	0.254
	Triplet	0.000	0.000	0.000	0.000
	Quintet	0.059	0.086	0.082	0.086
$[NpL^1]^-$	Doublet	0.462	0.447	0.452	0.418
	Quartet	0.000	0.000	0.000	0.000
	Sextet	0.081	0.109	0.105	0.137
$[PuL^1]^-$	Singlet	2.157	2.157	2.127	2.217
	Triplet	1.062	1.035	1.034	1.024
	Quintet	0.413	0.370	0.376	0.367
	Heptet	0.000	0.000	0.000	0.000

Table S2. Calculated relative energies (eV) of $[AnL^1]^-$ (An = Ac~Pu) in various ESSs.

Isomers	ΔE	ΔE_0	ΔH	ΔG
[UL ²]	0.000	0.000	0.000	0.000
$[UL^2]'$	0.160	0.138	0.160	0.160
[UL ²]"	0.259	0.221	0.226	0.137

Table S3. Calculated relative energies (eV) of geometric isomers of [UL²] in the quintet state.

culculated at 1	uiger ousi.	5 5015.						
Compls.			[U	L ²]			$[UL^2]'$	$[UL^{2}]''$
ESS	Quintet	Quintet	Quintet	Quintet	Triplet	Singlet	Quintet	Quintet
Approach ^a	Pri	Pri-2	ADF	ADF-so	Pri	Pri	Pri	Pri
An-C(t)	2.786	2.784	2.768	2.794	2.775	2.797	2.721	2.659
An-N	2.715	2.716	2.710	2.720	2.698	2.717	2.432	2.381
An-Ar _{cent}	2.484	2.478	2.465	2.486	2.421	2.442	2.321	2.316
An-Pl _{cent}	2.530	2.526	2.549	2.525	2.522	2.457	3.595	3.574
$\alpha 1^{b}$	176.7	176.6	174.8	176.9	177.7	177.5	155.4	147.8
$\alpha 2^{b}$	170.4	170.3	168.8	170.6	169.5	170.6	146.7	136.0
β1 °	123.6	123.6	124.8	123.5	122.3	122.8	142.5	150.9
β2 °	118.1	118.0	116.6	118.3	117.0	118.1	158.7	134.3
$\gamma 1 \ ^d$	49.9	50.1	49.4	50.2	53.7	52.3	36.5	24.2
γ2 d	55.3	55.8	54.8	55.9	55.5	62.8	2.9	56.4

Table S4. Optimized bond lengths, angles (α and β in degree) and interplanar arene/pyrrolide angles (γ) for [UL²] in various electron-spin states and geometric isomers, compared with those calculated at larger basis sets.

^a Levels of theory Pri, Pri-2, ADF and ADF-so correspond to Pri: PBE/B-I/AE, Pri: PBE/B-IV/AE, ADF: PBE/B-II/ZORA and ADF: PBE/B-II/SOC-ZORA, respectively. Noting that B-IV, larger than B-I, is all-electron Gaussian correlation-consistent basis sets of triple-zeta quality. AE and ZORA are at the scalar relativistic level, while SOC-ZORA includes the spin-orbit coupling (SOC) effect.

 b a1 and a2 denote the C(t)-An-C(t) and N-An-N angles, respectively. The C(t) atoms are marked in Chart 1b.

^c β 1 and β 2 are the Ar_{cent}-An-Ar_{cent} and Pl_{cent}-An-Pl_{cent} angles, respectively, where the subscript "cent" stands for the centroid of the cycle.

 $d\gamma 1$ is the interplanar angles between Arenes, and $\gamma 2$ is between Pyrroles.

Complexes	\mathbf{S}_{An}	S _{Ar}	\mathbf{S}_{Pl}	Sother	Q _{An}	Q _{Ar}	Q_{Pl}	Q _{other}
[AcL ²]	0.152	0.729	0.131	-0.012	1.907	-0.584	-0.928	-0.395
[ThL ²]	0.772	1.024	0.214	-0.011	1.992	-0.796	-0.896	-0.300
[PaL ²]	1.796	1.078	0.107	0.018	2.003	-0.840	-0.859	-0.304
$[UL^2]$	3.170	0.690	0.066	0.073	1.939	-0.747	-0.886	-0.306
[NpL ²]	4.453	0.508	0.028	0.012	1.869	-0.644	-0.918	-0.307
[PuL ²]	5.650	0.381	-0.041	0.011	1.761	-0.526	-0.944	-0.291
$[AcL^2]^+$	0.000	0.000	0.000	0.000	1.946	-0.182	-0.728	-0.036
$[ThL^{2}]^{+}$	0.395	0.468	0.111	0.026	2.095	-0.366	-0.684	-0.044
$[PaL^2]^+$	1.484	0.422	0.091	0.004	2.042	-0.342	-0.657	-0.043
$[UL^{2}]^{+}$	2.742	0.293	-0.044	0.009	2.006	-0.223	-0.643	-0.14
[NpL ²] ⁺	4.012	0.188	-0.115	-0.085	1.961	-0.255	-0.664	-0.042
[PuL ²]+	5.173	-0.002	-0.187	0.016	1.923	-0.210	-0.619	-0.094

Table S5. Calculated electron-spin density of each fragment ($S_{Frag.}$) and charges ($Q_{Frag.}$) in $[AnL^2]^z$ (An = Ac~Pu, z = 0 and +1).^a

^{a.} Obtained at geometries optimized by the level of theory Pri: PBE/B-I/gas.

Complexes	S _{An}	\mathbf{S}_{Ar}	\mathbf{S}_{P1}	Sothers	Q _{An}	Q _{Ar}	Q_{Pl}	Qothers
[AcL ²]	0.152	0.767	0.105	-0.024	0.930	0.145	-0.420	-0.655
$[ThL^2]$	0.717	1.101	0.207	-0.026	0.973	0.019	-0.329	-0.663
[PaL ²]	1.712	1.177	0.132	-0.021	0.934	0.032	-0.319	-0.646
$[UL^2]$	3.123	0.839	0.038	0.000	0.625	0.262	-0.264	-0.624
[NpL ²]	4.389	0.626	-0.023	0.008	0.722	0.244	-0.244	-0.722
[PuL ²]	5.622	0.418	-0.054	0.015	0.745	0.302	-0.291	-0.756
$[AcL^2]^+$	0.000	0.000	0.000	0.000	0.867	0.651	-0.144	-0.375
$[ThL^2]^+$	0.499	0.460	0.046	-0.006	0.904	0.522	0.019	-0.444
$[PaL^2]^+$	1.403	0.518	0.082	-0.003	0.802	0.563	-0.004	-0.361
[UL ²]+	2.670	0.369	-0.046	0.006	0.544	0.762	0.046	-0.352
$[NpL^2]^+$	4.055	0.106	-0.183	0.022	0.526	0.783	0.036	-0.344
$[PuL^2]^+$	5.200	-0.006	-0.216	0.023	0.717	0.660	0.009	-0.386

Table S6. Electron-spin density of each fragment ($S_{Frag.}$) and charges ($Q_{Frag.}$) in $[AnL^2]^z$ (An = Ac~Pu, z = 0 and +1), obtained at geometries optimized by the level of theory ADF: PBE/B-II/gas.

Complexes	Approach	α1	α2	β1	β2	γ1	γ2
[AcL ²]	Pri	175.3	172.0	128.5	120.9	42.3	42.9
[ThL ²]	Pri	177.8	172.9	123.5	120.9	46.5	53.1
[PaL ²]	Pri	175.0	168.8	124.6	116.6	49.9	55.2
$[UL^2]$	Pri	176.7	170.4	123.6	118.1	49.9	55.3
[NpL ²]	Pri	179.2	174.4	121.9	121.8	44.7	51.3
[PuL ²]	Pri	173.5	170.6	118.7	128.7	19.6	42.0
$[AcL^2]^+$	Pri	177.6	177.4	126.8	125.3	30.4	38.0
$[ThL^2]^+$	Pri	179.3	173.5	123.1	120.2	49.7	44.9
[PaL ²] ⁺	Pri	178.7	173.2	122.8	119.6	49.1	52.8
[UL ²]+	Pri	177.7	171.9	123.2	117.9	48.7	50.0
$[NpL^2]^+$	Pri	179.2	173.5	122.3	119.5	47.8	50.5
$[PuL^2]^+$	Pri	178.8	175.8	121.1	121.5	44.1	46.4
[AcL ²]	ADF	174.4	172.2	129.2	121.1	39.1	40.9
[ThL ²]	ADF	177.6	173.2	123.6	121.5	44.9	51.9
[PaL ²]	ADF	174.8	168.8	124.8	116.6	49.4	54.8
$[UL^2]$	ADF	174.8	168.8	124.8	116.6	49.4	54.8
[NpL ²]	ADF	176.1	173.1	119.5	125.9	25.8	45.1
[PuL ²]	ADF	174.8	171.1	120.4	128.8	15.7	41.6
$[AcL^2]^+$	ADF	176.6	177.8	127.9	125.6	25.3	36.2
$[ThL^2]^+$	ADF	178.4	173.6	123.6	124.5	28.9	45.3
$[PaL^2]^+$	ADF	178.5	173.0	122.6	119.7	48.0	51.8
$[UL^{2}]^{+}$	ADF	177.3	171.7	123.4	117.8	48.4	51.0
$[NpL^2]^+$	ADF	178.4	173.6	123.0	119.8	46.3	50.1
[PuL ²] ⁺	ADF	178.6	179.3	121.1	125.0	33.2	44.0
$[UL^2(BH_4)]$	Pri	178.2	119.8	122.6	119.6	8.0	76.8
	Expt. ^b	174.7	118.9	122.0	117.4	14.2	81.5
$[UL^2(I)]$	Pri	176.6	119.5	117.9	119.3	11.8	78.0
	Expt. ^b	170.7	118.3	121.4	117.0	16.4	82.2

Table S7. Bond angles (α and β in degree) and interplanar arene/pyrrolide angles (γ) of actinide complexes optimized by Priroda and ADF codes.^a

^a $\alpha 1$ and $\alpha 2$ denote the C(t)-An-C(t) and N-An-N angles, respectively. The C(t) atoms are marked in Chart 1b. $\beta 1$ and $\beta 2$ are the Ar_{cent}-An-Ar_{cent} and Pl_{cent}-An-Pl_{cent} angles, respectively, where the subscript "cent" stands for the centroid of the cycle. $\gamma 1$ is the interplanar angles between arenes, and $\gamma 2$ is between pyrroles.

^{b.}Experimental values from Refs.^{10, 11}.

	Appr.s	An-C(t) ^c	An-N	An-Ar _{cent} ^d	An-Pl _{cent} ^d	FSR _{An-C(t)}	FSR _{An-N}
[AcL ²]	Pri	2.926	2.756	2.658	2.669	1.005	0.960
[ThL ²]	Pri	2.838	2.726	2.561	2.540	1.013	0.988
[PaL ²]	Pri	2.768	2.708	2.460	2.543	0.999	0.992
$[UL^2]$	Pri	2.786	2.716	2.484	2.530	1.013	1.002
[NpL ²]	Pri	2.801	2.697	2.586	2.515	1.015	0.992
[PuL ²]	Pri	2.763	2.646	2.906	2.471	0.997	0.969
$[AcL^2]^+$	Pri	2.911	2.692	2.812	2.611	1.055	0.990
$[ThL^2]^+$	Pri	2.864	2.641	2.556	2.543	1.081	1.012
$[PaL^2]^+$	Pri	2.832	2.640	2.534	2.472	1.081	1.023
$[UL^{2}]^{+}$	Pri	2.803	2.608	2.517	2.486	1.078	1.019
$[NpL^2]^+$	Pri	2.821	2.622	2.556	2.472	1.081	1.020
$[PuL^2]^+$	Pri	2.844	2.598	2.635	2.470	1.085	1.007
$[AcL^2]$	ADF	2.917	2.754	2.678	2.684	1.118	1.072
[ThL ²]	ADF	2.836	2.734	2.579	2.553	1.013	0.990
[PaL ²]	ADF	2.768	2.710	2.465	2.549	0.999	0.993
$[UL^2]$	ADF	2.780	2.724	2.486	2.533	1.011	1.005
[NpL ²]	ADF	2.750	2.652	2.807	2.478	1.118	1.096
[PuL ²]	ADF	2.761	2.654	2.933	2.483	1.118	1.092
$[AcL^2]^+$	ADF	2.897	2.688	2.850	2.622	1.110	1.046
$[ThL^2]^+$	ADF	2.801	2.654	2.769	2.510	1.057	1.017
$[PaL^2]^+$	ADF	2.818	2.645	2.538	2.484	1.075	1.025
$[UL^{2}]^{+}$	ADF	2.797	2.622	2.513	2.488	1.076	1.024
[NpL ²]+	ADF	2.816	2.634	2.561	2.485	1.145	1.088
$[PuL^2]^+$	ADF	2.802	2.600	2.746	2.460	1.134	1.070
$[UL^2(BH_4)]$	Pri	2.850	2.454	2.501			
	Expt. ^e	2.845	2.464	2.591		_	
$[UL^2(I)]$	Pri	2.834	2.446	2.538	3.650		
	Expt. ^e	2.870	2.466	2.619	3.663		

Table S8. Bond lengths ^a (Å) of $[AnL^2]^z$ (An = Ac~Pu, z = 0 and +1) optimized by Priroda and ADF codes, along with formal shortness ratio (FSR)^b.

^{a.} Average value.

^{b.} FSR of a A-B bond is defined as $FSR_{A-B} = D_{A-B}/(R_A + R_B)$, where D_{A-B} is the optimized A-B bond length, and R_A and R_B values are the atomic radii. Pyykkö's calculations¹² showed the An^{VI} radius, Ac (1.86 Å), Th (1.75), Pa (1.72), U (1.70), Np (1.71) and Pu (1.72). Corresponding An^{III} and An^{II} radius are obtained by adding 0.15 and 0.30 Å, respectively. And radii of C and N are 0.75 and 0.71 Å, respectively.

^{c.} The C(t) atoms are marked in Chart 1b.

^{d.} The distance was determined between the actinide and the centroid of planar Ar or Pl, where the subscript "cent" stands for the centroid of the cycle.

e. Experimental values from Refs.^{10, 11}.

An =	$[AnL^{2}]^{+} + [K(C_{24}H_{12})] = [AnL^{2}] + [K(C_{24}H_{12})]^{+}$				
	$\Delta_r E$	$\Delta_r E_0$	$\Delta_r G$	$\Delta_r G(sol)$	$\Delta_r G(sol-so)$
Ac	0.63	0.56	0.53	0.65	0.62
Th	0.32	0.30	0.21	0.34	0.34
Ра	0.09	0.09	0.05	0.17	0.13
U	-0.01	-0.01	-0.06	0.08	0.10
Np	0.45	0.40	0.31	0.46	0.41
Pu	-0.31	-0.29	-0.34	-0.15	-0.07

Table S9. Calculated reaction energies (in eV) while using the graphite potassium as reductant.

References:

- 1. F.-S. Guo, N. Tsoureas, G.-Z. Huang, M.-L. Tong, A. Mansikkamaeki and R. A. Layfield, *Angew. Chem. Int. Ed.*, 2020, **59**, 2299-2303.
- 2. N. Kaltsoyannis, Inorg. Chem., 2013, 52, 3407-3413.
- 3. Y.-L. Wang, H.-S. Hu, W.-L. Li, F. Wei and J. Li, J. Am. Chem. Soc., 2016, 138, 1126-1129.
- 4. Y.-J. Zhang, J.-H. Lan, L. Wang, Q.-Y. Wu, C.-Z. Wang, T. Bo, Z.-F. Chai and W.-Q. Shi, *J. Hazard. Mater.*, 2016, **308**, 402-410.
- Q. Y. Wu, J. H. Lan, C. Z. Wang, Z. P. Cheng, Z. F. Chai, J. K. Gibson and W. Q. Shi, *Dalton Trans.*, 2016, 45, 3102-3110.
- 6. H.-S. Hu, F. Wei, X. Wang, L. Andrews and J. Li, J. Am. Chem. Soc., 2014, 136, 1427-1437.
- Z. Bao, H.-B. Zhao, N. Qu, G. Schreckenbach and Q.-J. Pan, *Dalton Trans.*, 2016, 45, 15970-15982.
- 8. H.-B. Zhao, M. Zheng, G. Schreckenbach and Q.-J. Pan, *Dalton Trans.*, 2018, 47, 2148-2151.
- J.-N. Tian, M. Zheng, L. Li, G. Schreckenbach, Y.-R. Guo and Q.-J. Pan, *New J. Chem.*, 2019, 43, 1469-1477.
- P. L. Arnold, C. J. Stevens, J. H. Farnaby, M. G. Gardiner, G. S. Nichol and J. B. Love, *J. Am. Chem. Soc.*, 2014, **136**, 10218-10221.
- P. L. Arnold, J. H. Farnaby, R. C. White, N. Kaltsoyannis, M. G. Gardiner and J. B. Love, *Chem. Sci.*, 2014, 5, 756-765.
- 12. P. Pyykko, J. Phys. Chem. A, 2015, 119, 2326-2337.

Optimized Cartesian coordinates of all complexes by Priroda code

[AcL ²]			
Total er	nergy: -27076	5.22910491 Ha	artree
С	0.23197664	-0.33130315	0.34551596
С	0.28270448	-1.00057038	1.58829518
С	1.35195126	-0.16904257	-0.69665060
Ν	-1.06974238	0.02733426	0.04798041
Н	1.16471246	-1.38040566	2.10430725
С	-1.04851284	-1.02308195	2.08624150
С	1.12144809	-1.33854496	-1.68263221
С	1.22935904	1.20205199	-1.38945499
С	2.73541608	-0.24580344	-0.02803288
С	-1.84553580	-0.36647375	1.12257912
Н	-1.36383734	-1.42340472	3.04998206
С	0.17254063	-1.20090871	-2.74814393
С	1.56277797	-2.64547656	-1.38106141
Н	1.93336788	1.27717441	-2.23473863
Н	1.46358635	1.99776024	-0.66415629
Н	0.20580471	1.38350357	-1.74544952
Н	3.52843997	-0.17719134	-0.79039344
Н	2.89218115	-1.17541634	0.53987197
Н	2.85185285	0.59160640	0.67774541
С	-3.37861225	-0.24892138	1.07277017
С	-3.81718907	-1.42172039	0.16438031
С	-3.91336022	-2.73806038	0.66659216
С	1.04911646	-3.81181928	-1.98934013
Ν	-1.23083999	-5.42722544	-0.62979626
С	-0.28047504	-2.33781255	-3.42876313
Н	-0.18842047	-0.21542703	-3.04203873
Н	2.24652265	-2.77004761	-0.53745964
С	-3.78126419	1.11757924	0.48499839
С	-3.98108397	-0.35948297	2.48404731
С	-3.80525869	-1.26742969	-1.26065180
Н	-3.87201696	-2.87388053	1.75034652
С	-3.89007799	-3.89489209	-0.14272182
С	1.20412305	-5.19774238	-1.31996160
С	0.10217596	-3.63028139	-3.04999662
С	-1.99015969	-5.26523397	0.51442444
С	0.08754232	-5.23015242	-0.26217557
Н	-0.99358289	-2.21501839	-4.25110361
Н	-4.86895653	1.16252075	0.30985411
Н	-3.24827142	1.32552590	-0.45308866
Н	-3.50560164	1.91379818	1.19501027

Н	-5.08129122	-0.32285997	2.42961128
Н	-3.63069234	0.48170306	3.10257266
Н	-3.69921756	-1.28710279	3.00496496
С	-3.87555567	-2.39744408	-2.08442281
Н	-3.75556157	-0.27480478	-1.70796208
С	-3.87652672	-3.69677476	-1.56229329
С	-3.52710497	-5.27757153	0.44845262
С	1.00770382	-6.34908501	-2.32533739
С	2.58460258	-5.36647264	-0.66213401
Н	-0.31240311	-4.49179943	-3.57323144
С	-1.16339737	-4.91324052	1.60405827
С	0.16790205	-4.89070757	1.10644195
Н	-3.88082946	-2.26230341	-3.17141563
Н	-3.88089991	-4.55115813	-2.23893884
С	-4.00425860	-6.43329781	-0.45242279
С	-4.13228947	-5.48024380	1.84828752
Н	1.19042976	-7.30975142	-1.81759401
Н	1.71218266	-6.25638109	-3.16848488
Н	-0.02206321	-6.37885720	-2.70748853
Н	2.64718368	-6.35591367	-0.18252001
Н	2.79048441	-4.61394260	0.11413406
Н	3.37806460	-5.29296648	-1.42357690
Н	-1.46200575	-4.74413824	2.63881083
Н	1.06671347	-4.70148093	1.69364195
Н	-3.78046533	-7.39348396	0.03955239
Н	-3.47750806	-6.43636461	-1.41670780
Н	-5.09143547	-6.37082688	-0.62539652
Н	-3.80072949	-4.72599183	2.57798357
Н	-3.83586167	-6.46593304	2.24007127
Н	-5.23234227	-5.43848728	1.79452288
Ac	-1.21759989	-2.67648285	-0.46967805

[ThL²]

Total energy: -27821.21025124 Hartree

С	0.23659738	-0.40434199	0.36148671
С	0.27329199	-1.19134083	1.53782257
С	1.32430442	-0.18400084	-0.68607508
Ν	-1.05295766	-0.00815754	0.08969648
Н	1.14830454	-1.61689422	2.02720852
С	-1.06651501	-1.21386310	2.03959802
С	1.01582049	-1.34344552	-1.64671733
С	1.17204098	1.19508990	-1.35081947
С	2.72963453	-0.27288645	-0.06901143

С	-1.83453706	-0.43931224	1.13707383
Η	-1.39206787	-1.65962670	2.97850334
С	0.02316327	-1.20955827	-2.65796560
С	1.48494931	-2.64793597	-1.34527996
Η	1.84856207	1.28117201	-2.21715033
Η	1.42810678	1.98290708	-0.62414304
Η	0.13815533	1.37717206	-1.67373590
Η	3.49700202	-0.21174672	-0.85790463
Н	2.89772754	-1.20105533	0.49709171
Н	2.87707577	0.56610816	0.62947903
С	-3.34864518	-0.26300362	1.06364130
С	-3.71258546	-1.42302137	0.12337867
С	-3.82814426	-2.73789014	0.64351384
С	0.94297829	-3.81043617	-1.95110471
Ν	-1.21235190	-5.40647687	-0.57975696
С	-0.43839850	-2.34366588	-3.34772201
Н	-0.35662608	-0.22341199	-2.92647567
Н	2.25094514	-2.76488085	-0.58029430
С	-3.71128414	1.11267628	0.47800404
С	-4.00043096	-0.38722294	2.45048861
С	-3.63435961	-1.26993283	-1.28938069
Н	-3.89780842	-2.87010423	1.72206408
С	-3.78586182	-3.88960928	-0.18369971
С	1.17725465	-5.18473835	-1.30406923
С	-0.05000225	-3.63640164	-2.95606328
С	-1.97616518	-5.19908410	0.54594888
С	0.09568128	-5.16398272	-0.22760079
Н	-1.18087071	-2.22382473	-4.14154111
Н	-4.79251846	1.16895413	0.26961292
Н	-3.14940600	1.32215983	-0.44217805
Н	-3.45086488	1.90042521	1.20324079
Н	-5.09852494	-0.35773524	2.35944053
Н	-3.67824548	0.45454360	3.08385755
Н	-3.72810460	-1.31385878	2.97717309
С	-3.70763365	-2.39652428	-2.12625368
Н	-3.55366939	-0.27561319	-1.72943931
С	-3.70568539	-3.69624293	-1.59141799
С	-3.49730433	-5.26381911	0.44122140
С	0.95179069	-6.34910026	-2.28403502
С	2.58038581	-5.32953794	-0.69271080
Н	-0.48494730	-4.50384460	-3.45320734
С	-1.17199558	-4.71388777	1.60537444
С	0.16829474	-4.69131758	1.10499917
Н	-3.67439119	-2.26243483	-3.21100737

Н	-3.67979634	-4.55540547	-2.26223419
С	-3.93418805	-6.43060913	-0.46138024
С	-4.15201548	-5.44558617	1.82032214
Н	1.15628264	-7.30373323	-1.77295196
Н	1.62954954	-6.26021484	-3.14913635
Η	-0.08801310	-6.38716716	-2.63569398
Н	2.67429557	-6.32064147	-0.22108957
Н	2.79647476	-4.57873760	0.08176310
Η	3.34927051	-5.24004271	-1.47741636
Η	-1.47881529	-4.49260577	2.62670883
Η	1.06242626	-4.44939318	1.67791974
Η	-3.72555404	-7.38579238	0.04697632
Η	-3.37803239	-6.44046626	-1.40843252
Η	-5.01517187	-6.37129687	-0.67022068
Η	-3.83091316	-4.69365243	2.55630598
Η	-3.88414808	-6.43410897	2.22603043
Η	-5.24920838	-5.38812030	1.73177716
Th	-1.19157831	-2.68594606	-0.40177429

[PaL ²]			
Total en	ergy: -28580).83728077 Ha	rtree
С	0.23810738	-0.44724420	0.37379881
С	0.27031473	-1.25287652	1.53548649
С	1.30943552	-0.19775431	-0.68277794
Ν	-1.04503485	-0.03654112	0.11141469
Н	1.14147081	-1.70242933	2.00972203
С	-1.06754037	-1.27604715	2.03519379
С	0.96574853	-1.34204179	-1.64701127
С	1.14442524	1.19161488	-1.32113442
С	2.72727288	-0.29783496	-0.09711283
С	-1.82877046	-0.48248741	1.14617489
Н	-1.40043964	-1.74621856	2.95931240
С	-0.04390380	-1.20524568	-2.62443497
С	1.41575918	-2.64834517	-1.32223181
Н	1.81452477	1.29527491	-2.19044334
Н	1.40217980	1.96873811	-0.58361128
Н	0.10790892	1.37372462	-1.63441780
Н	3.47823879	-0.24225935	-0.90200929
Н	2.90197804	-1.22577353	0.46689570
Н	2.89576994	0.54098215	0.59680325
С	-3.33720849	-0.27631151	1.05393462
С	-3.67636489	-1.42068671	0.08823527
С	-3.76389370	-2.73597401	0.61433988

С	0.89319096	-3.80726216	-1.95334158
Ν	-1.20295546	-5.38224635	-0.55299447
С	-0.56995014	-2.34820960	-3.26764431
Н	-0.43868621	-0.22022542	-2.87516885
Η	2.18367554	-2.76548125	-0.56144052
С	-3.67221864	1.11011842	0.47894630
С	-4.01968976	-0.41144027	2.42477735
С	-3.55998221	-1.26511330	-1.31022214
Η	-3.84064707	-2.86712264	1.69096797
С	-3.74903984	-3.88595786	-0.21731092
С	1.16283304	-5.17041399	-1.30044603
С	-0.11554800	-3.64222471	-2.92730095
С	-1.96645952	-5.15991956	0.56580208
С	0.10024706	-5.12497660	-0.20726060
Η	-1.31936487	-2.22871855	-4.05180313
Н	-4.75086129	1.18445692	0.26335288
Η	-3.10111472	1.31904752	-0.43530579
Η	-3.40582018	1.88748641	1.21313470
Н	-5.11568311	-0.38678588	2.31036089
Η	-3.71633175	0.42972200	3.06816829
Н	-3.75430673	-1.33777624	2.95502892
С	-3.55100109	-2.39922487	-2.15314500
Н	-3.45605563	-0.27173465	-1.74769696
С	-3.63193137	-3.70217503	-1.61228098
С	-3.48363755	-5.24899201	0.43754777
С	0.92211178	-6.34999752	-2.25737432
С	2.57974025	-5.29905186	-0.71809875
Н	-0.56483927	-4.51148184	-3.40845615
С	-1.16614630	-4.65574160	1.61683453
С	0.17139975	-4.63311065	1.11651430
Н	-3.50363363	-2.26651130	-3.23524906
Н	-3.58269075	-4.56315750	-2.27956228
С	-3.89504906	-6.43168718	-0.45522707
С	-4.16625362	-5.41267572	1.80522807
Н	1.12760433	-7.29711918	-1.73291346
Н	1.59262860	-6.27822139	-3.12956837
Н	-0.12050124	-6.38902452	-2.59948972
Н	2.69402797	-6.29020623	-0.25110488
Н	2.80398315	-4.54863718	0.05409614
Н	3.33210335	-5.20010975	-1.51750201
Н	-1.47737976	-4.40880395	2.63077425
Н	1.06402397	-4.36576454	1.68013375
Н	-3.67794585	-7.37848909	0.06511362
Н	-3.33213442	-6.44387369	-1.39787487

Н	-4.97504773	-6.38943774	-0.67268765
Н	-3.85081404	-4.66062238	2.54320390
Н	-3.91684890	-6.40149575	2.22183483
Н	-5.26101554	-5.34477858	1.69672798
Pa	-1.21593427	-2.67717624	-0.46557227

 $[UL^2]$

Total energy: -29355.05543933 Hartree

	05		
С	0.23339917	-0.44228029	0.37018735
С	0.26833298	-1.24585802	1.53260135
С	1.31094641	-0.19909363	-0.68350182
Ν	-1.04710737	-0.02532737	0.10604571
Η	1.14055972	-1.69135653	2.00864426
С	-1.06809421	-1.26844655	2.03201146
С	0.97014833	-1.34516331	-1.64740551
С	1.15216182	1.18888369	-1.32688777
С	2.72570539	-0.30124289	-0.09079581
С	-1.82766178	-0.47700870	1.14045660
Н	-1.40082537	-1.73420304	2.95841694
С	-0.03476481	-1.20662524	-2.62993421
С	1.43051583	-2.64693591	-1.33858679
Н	1.82391358	1.28932516	-2.19534300
Н	1.41135107	1.96632767	-0.59032000
Н	0.11621716	1.37347535	-1.64038365
Н	3.48161428	-0.24877026	-0.89133586
Н	2.89504257	-1.22783935	0.47708001
Н	2.89156939	0.53878612	0.60211528
С	-3.33870507	-0.27754305	1.05414177
С	-3.67981473	-1.42393640	0.09075980
С	-3.78556515	-2.73513809	0.61181267
С	0.89754369	-3.80465972	-1.95303536
Ν	-1.20547300	-5.39327804	-0.56018155
С	-0.55226780	-2.34806767	-3.27283504
Н	-0.42888347	-0.22162787	-2.88112866
Η	2.19365129	-2.76468182	-0.57230655
С	-3.68179587	1.10713512	0.47912763
С	-4.01442394	-0.41443774	2.42818334
С	-3.57042884	-1.26697462	-1.30846291
Н	-3.85544877	-2.86660376	1.68943646
С	-3.75224256	-3.88353016	-0.21400288
С	1.16414166	-5.16936680	-1.30094847
С	-0.10661578	-3.64014470	-2.93231011
С	-1.96552581	-5.16356773	0.55913404
С	0.09525115	-5.12867056	-0.21180599

	-1.30840700	-2.22893279	-4.05181/93
Н	-4.76086586	1.17786554	0.26433231
Н	-3.11044993	1.31868069	-0.43434902
Н	-3.41796181	1.88485590	1.21375793
Н	-5.11118542	-0.39356526	2.32004022
Н	-3.71030180	0.42831168	3.06894037
Н	-3.74213835	-1.33895979	2.95815163
С	-3.56790469	-2.39989529	-2.14543891
Н	-3.46734165	-0.27366455	-1.74591385
С	-3.64216598	-3.70058415	-1.60999569
С	-3.48497555	-5.24802259	0.43821953
С	0.92933633	-6.34644433	-2.26269787
С	2.57825420	-5.29771215	-0.71175271
Н	-0.55538101	-4.50920902	-3.41395848
С	-1.16729612	-4.66007827	1.61147935
С	0.16894586	-4.63753218	1.11162479
Н	-3.51269205	-2.26738542	-3.22808736
Н	-3.59383579	-4.56143294	-2.27726677
С	-3.90394858	-6.42852160	-0.45424621
С	-4.16085177	-5.41131882	1.80929052
Н	1.13708691	-7.29399755	-1.74008678
Н	1.60059085	-6.27093050	-3.13405492
Н	-0.11324364	-6.38801666	-2.60453138
Н	2.69007315	-6.28984270	-0.24649919
Н	2.79723379	-4.54957018	0.06417978
Н	3.33546426	-5.19671551	-1.50638967
Н	-1.47866731	-4.41677661	2.62623440
Н	1.06235128	-4.37373759	1.67564892
Н	-3.68925572	-7.37578785	0.06607111
Н	-3.34105202	-6.44302609	-1.39683869
Н	-4.98414321	-6.38295393	-0.67026093
Н	-3.83897416	-4.66125302	2.54654322
Н	-3.91046847	-6.40100176	2.22296800
Н	-5.25622500	-5.34168600	1.70768899
U	-1.20599569	-2.68079369	-0.43899514

[NpL²] Total en

otal ei	nergy: -30144	l.61423008 Ha	artree
С	0.23256724	-0.42373766	0.36383837
С	0.27511552	-1.19036256	1.54926579
С	1.31838082	-0.19359629	-0.68680760
Ν	-1.05494325	-0.03472569	0.08470630
Н	1.15121740	-1.61150759	2.04095660
С	-1.06258620	-1.21310335	2.04960763

С	1.00739475	-1.34640866	-1.65552477
С	1.16018754	1.19025775	-1.34073123
С	2.72726359	-0.28378642	-0.07684858
С	-1.83108685	-0.45877517	1.13574537
Η	-1.38811894	-1.65477354	2.99069498
С	0.05401083	-1.20593979	-2.68625329
С	1.45021200	-2.64851054	-1.33153481
Η	1.83635447	1.28984294	-2.20588128
Η	1.41256917	1.97184619	-0.60629958
Η	0.12461745	1.36925264	-1.65957674
Η	3.49174799	-0.21992118	-0.86834020
Η	2.89904959	-1.21219324	0.48745055
Η	2.87666180	0.55397960	0.62241387
С	-3.34602604	-0.27252399	1.05794893
С	-3.71302780	-1.42586941	0.10966214
С	-3.79566490	-2.73703057	0.62973191
С	0.93526342	-3.80441826	-1.96018227
Ν	-1.21245320	-5.37860277	-0.57847435
С	-0.44241530	-2.34376832	-3.34174602
Η	-0.32932773	-0.22029582	-2.95173831
Н	2.17380449	-2.76939498	-0.52685208
С	-3.69666719	1.10838088	0.47669350
С	-4.00558542	-0.39817183	2.44154347
С	-3.67483906	-1.26811623	-1.29198780
Н	-3.80958082	-2.87079921	1.71030103
С	-3.78562040	-3.88376184	-0.19568364
С	1.17190077	-5.17466808	-1.30398487
С	-0.01710258	-3.63389263	-2.98723627
С	-1.97060650	-5.17995063	0.54964506
С	0.09333913	-5.14518857	-0.22152984
Н	-1.18393208	-2.22352101	-4.13660951
Н	-4.77722021	1.17875381	0.26925102
Н	-3.13069223	1.31461264	-0.44159855
Н	-3.42756688	1.88981344	1.20531615
Н	-5.10326168	-0.36559602	2.34658060
Н	-3.68420030	0.44219395	3.07686876
Н	-3.73749639	-1.32520966	2.96937856
С	-3.69678249	-2.39761192	-2.12532980
Н	-3.58929777	-0.27438159	-1.73256023
С	-3.74641936	-3.69596860	-1.59354954
С	-3.49318390	-5.25328033	0.43922404
С	0.93885027	-6.34574758	-2.27451724
С	2.57901378	-5.31759662	-0.70009742
Н	-0.45480742	-4.50112631	-3.48245142

С	-1.16653776	-4.71804430	1.61489833
С	0.17132795	-4.69549815	1.11503185
Н	-3.66282250	-2.26385264	-3.21025968
Η	-3.71558454	-4.55503478	-2.26435742
С	-3.91902303	-6.42739969	-0.45954031
С	-4.15456735	-5.43152424	1.81613455
Η	1.14012487	-7.29609199	-1.75460754
Η	1.61454854	-6.27037152	-3.14247662
Η	-0.10293970	-6.38131606	-2.62023307
Η	2.67446152	-6.30769989	-0.22709382
Η	2.80001221	-4.56621088	0.07220948
Η	3.34443330	-5.23091522	-1.48851034
Η	-1.47314651	-4.50156256	2.63755066
Н	1.06665353	-4.45877325	1.68865415
Η	-3.70109445	-7.37752930	0.05398191
Η	-3.35918788	-6.43536456	-1.40433843
Η	-5.00027247	-6.38207129	-0.67031556
Η	-3.83669884	-4.67903591	2.55275745
Η	-3.88758036	-6.41906036	2.22433947
Η	-5.25153829	-5.37566300	1.72389193
Np	-1.17954881	-2.69016154	-0.36998207

[PuL²] Total energy: -30949.28890383 Hartree

С	0.14110546	-0.44687479	0.32999319
С	0.24922514	-1.10115950	1.57656726
С	1.19426967	-0.19003789	-0.74923826
Ν	-1.16235729	-0.08985074	0.08975365
Н	1.15321460	-1.48224444	2.05200485
С	-1.06150131	-1.10451796	2.14390861
С	1.04096716	-1.33463668	-1.76962155
С	0.95205467	1.19100671	-1.38265117
С	2.61604795	-0.21004211	-0.14806677
С	-1.88728671	-0.43969996	1.20678878
Н	-1.33173915	-1.46848296	3.13478360
С	0.72069901	-1.17331246	-3.12499797
С	1.18592043	-2.64606691	-1.28550056
Н	1.69731488	1.39577250	-2.16853892
Н	1.04302437	1.96974106	-0.60891500
Н	-0.05987890	1.26090939	-1.80609057
Н	3.36135044	-0.03962692	-0.94183218
Н	2.85655804	-1.17088562	0.33268681
Η	2.71827407	0.58464505	0.60849379

С	-3.41099124	-0.28038191	1.17572145
С	-3.78923713	-1.43941572	0.23127264
С	-3.93737760	-2.74933151	0.75761788
С	0.96880156	-3.78847811	-2.07476915
Ν	-1.31558806	-5.32055901	-0.55878850
С	0.54502137	-2.29700551	-3.94058688
Н	0.59350922	-0.17473029	-3.54775694
Н	1.47748459	-2.78477012	-0.23856619
С	-3.80370305	1.09677294	0.61105845
С	-4.01839619	-0.42403213	2.57945866
С	-3.64659359	-1.29054234	-1.16736456
Н	-4.06159447	-2.87864903	1.83153429
С	-3.86083852	-3.89784118	-0.07293881
С	1.04820558	-5.15483647	-1.36659083
С	0.64963567	-3.59433437	-3.42610785
С	-2.02621688	-5.21266471	0.61552215
С	0.00474754	-5.10875351	-0.24900233
Н	0.29168054	-2.15832025	-4.99564302
Н	-4.89125908	1.14797565	0.43703834
Н	-3.27322813	1.31610546	-0.32525135
Н	-3.52522197	1.88102268	1.33339715
Η	-5.11923025	-0.41922922	2.52419875
Н	-3.69695722	0.42326035	3.20543587
Η	-3.70537783	-1.34546108	3.09322813
С	-3.62419733	-2.41615147	-2.00838839
Η	-3.49596997	-0.29972733	-1.59636879
С	-3.71720105	-3.70948568	-1.46674140
С	-3.55636101	-5.27165892	0.55816539
С	0.72978914	-6.32249679	-2.31648600
С	2.46464535	-5.36547368	-0.78989313
Н	0.46778543	-4.44999524	-4.07945090
С	-1.16942469	-4.84515105	1.67995280
С	0.14259012	-4.78589885	1.11860398
Н	-3.51088371	-2.28581909	-3.08814381
Н	-3.62082011	-4.57294802	-2.12520019
С	-4.02409338	-6.44498433	-0.32168639
С	-4.16380711	-5.43933940	1.95921103
Н	0.77054225	-7.27087640	-1.75767202
Н	1.46659662	-6.37146880	-3.13482701
Η	-0.28185663	-6.22778338	-2.73577069
Н	2.51415690	-6.32381680	-0.24819440
Н	2.75938250	-4.56475979	-0.09402565
Η	3.20357166	-5.38358875	-1.60736251
Н	-1.42467763	-4.71936888	2.73179455

Η	1.06406768	-4.58519288	1.66545653
Н	-3.79575197	-7.39621297	0.18565576
Н	-3.50141361	-6.45967805	-1.28748763
Н	-5.11170683	-6.38983516	-0.49421353
Н	-3.80094350	-4.69081784	2.67963849
Н	-3.89659693	-6.43093827	2.35721959
Н	-5.26263512	-5.36645674	1.91286516
Pu	-1.39929593	-2.71859347	-0.08766353

$[AcL^2]^+$			
Total en	ergy: -27076	5.08567549 Ha	artree
С	0.22758601	-0.34196569	0.33134558
С	0.28598621	-0.96522168	1.59503675
С	1.36069634	-0.16373123	-0.69951902
Ν	-1.08056177	-0.02802868	0.01610095
Η	1.17338360	-1.29479317	2.13519951
С	-1.04885516	-0.98752248	2.09389075
С	1.16440398	-1.34267812	-1.68664734
С	1.21886971	1.20411728	-1.39372105
С	2.73847361	-0.22276608	-0.01537620
С	-1.85159663	-0.37684106	1.10833800
Н	-1.35467348	-1.33732999	3.07977526
С	0.35383213	-1.20032168	-2.82924627
С	1.56625411	-2.65188795	-1.33398676
Н	1.94384973	1.30194396	-2.21755654
Н	1.41879271	2.00053776	-0.66056015
Н	0.20171418	1.37013831	-1.77517558
Н	3.53700800	-0.13341405	-0.76866189
Η	2.90986232	-1.15127687	0.54968000
Η	2.83466040	0.61427029	0.69258255
С	-3.38752889	-0.24350440	1.07447126
С	-3.85200026	-1.42736911	0.18822684
С	-3.88368872	-2.74382541	0.70400269
С	1.09117459	-3.80932063	-1.99328691
Ν	-1.23749799	-5.36706331	-0.64547907
С	-0.05808922	-2.32796571	-3.54976024
Н	0.02197589	-0.20976213	-3.14446337
Н	2.17540234	-2.78167694	-0.43571088
С	-3.77605445	1.11963045	0.47118954
С	-3.97749613	-0.33438246	2.49346287
С	-3.99556888	-1.27470320	-1.20421358
Н	-3.74866105	-2.88104650	1.78000199
С	-3.92418004	-3.89439917	-0.11733678

С	1.21154609	-5.20301694	-1.32565961
С	0.28128919	-3.61986159	-3.12957252
С	-1.99437636	-5.25104366	0.50463613
С	0.08445047	-5.21598861	-0.27322834
Н	-0.68028166	-2.19879475	-4.44068573
Н	-4.86587329	1.18547408	0.32351016
Н	-3.26197467	1.31136770	-0.48101277
Н	-3.47214697	1.91838941	1.16501321
Н	-5.07632260	-0.27423196	2.44873048
Н	-3.60900203	0.50638942	3.10043921
Н	-3.71198767	-1.26172317	3.02313735
С	-4.12517823	-2.39814642	-2.02981375
Н	-3.98186551	-0.27871948	-1.64978645
С	-4.06664006	-3.69449731	-1.50389064
С	-3.53509813	-5.28344529	0.45022244
С	0.99381446	-6.34874745	-2.33211451
С	2.58628963	-5.39392271	-0.65976046
Н	-0.10642009	-4.48171372	-3.67509217
С	-1.16427953	-4.94620429	1.60314311
С	0.17052805	-4.92379062	1.10371152
Н	-4.24540399	-2.26101210	-3.10883846
Н	-4.10725935	-4.55082678	-2.17898912
С	-3.99787275	-6.43352474	-0.46417249
С	-4.12921843	-5.50686628	1.85273709
Н	1.14443966	-7.31061609	-1.81842246
Н	1.71560176	-6.28262491	-3.16187675
Н	-0.02955130	-6.35763337	-2.73256126
Н	2.62802644	-6.38203323	-0.17707597
Н	2.81070084	-4.64262723	0.11238432
Н	3.38239510	-5.34525804	-1.41929884
Н	-1.45583131	-4.83070598	2.64696616
Н	1.07194518	-4.78756027	1.70102553
Н	-3.74568752	-7.39352347	0.01182166
Н	-3.48931229	-6.41697973	-1.43824125
Η	-5.08863722	-6.39804517	-0.61523293
Н	-3.81393596	-4.75375411	2.59055701
Н	-3.81492864	-6.49024216	2.23393223
Н	-5.22932654	-5.49003281	1.80249046
Ac	-1.18005943	-2.68982817	-0.37110217

 $[ThL^2]^+$

Total energy: -27821.05571051 Hartree C 0.23526585 -0.43206330 0.34774316

С	0.28147205	-1.13555124	1.57115993
С	1.33055647	-0.19583606	-0.69537991
Ν	-1.06759766	-0.08783720	0.04797602
Н	1.16190645	-1.51951448	2.08625313
С	-1.05311304	-1.15804193	2.07090822
С	1.01337233	-1.34451235	-1.66887984
С	1.17947692	1.19192409	-1.34375393
С	2.73240245	-0.29997172	-0.07465115
С	-1.84244794	-0.46709870	1.12575950
Н	-1.36703512	-1.56217682	3.03321683
С	-0.00169647	-1.20702360	-2.66338145
С	1.49066410	-2.64112618	-1.40185993
Н	1.87244141	1.29457910	-2.19405673
Н	1.42148251	1.96937486	-0.60269717
Н	0.15260823	1.38039184	-1.68483985
Н	3.50117199	-0.23595926	-0.86070974
Н	2.90050645	-1.22919327	0.49052449
Н	2.88417504	0.53569029	0.62542588
С	-3.35987084	-0.27527296	1.06075244
С	-3.72574481	-1.42411399	0.10462411
С	-3.87323271	-2.73151874	0.60394242
С	0.94067805	-3.80381351	-1.97272419
Ν	-1.22207378	-5.31790575	-0.60005733
С	-0.47835860	-2.34493236	-3.32825848
Н	-0.38093716	-0.22136577	-2.93294254
Н	2.24672997	-2.75959019	-0.62401980
С	-3.71291393	1.10950258	0.48899825
С	-4.00572846	-0.41510647	2.44805332
С	-3.61627686	-1.26667943	-1.31018663
Н	-3.92999740	-2.86444183	1.68554348
С	-3.79884369	-3.88316480	-0.20138318
С	1.18380300	-5.17125304	-1.31031008
С	-0.07375764	-3.63613914	-2.96326049
С	-1.98229485	-5.16832886	0.54247750
С	0.09603519	-5.13319793	-0.23380715
Н	-1.22264334	-2.22496640	-4.12120627
Н	-4.79651681	1.18220555	0.30387626
Н	-3.16850870	1.32531590	-0.44017429
Н	-3.43190005	1.88706160	1.21605057
Н	-5.10314206	-0.38257416	2.36080845
Н	-3.68519295	0.42293724	3.08556187
Н	-3.73372638	-1.34296563	2.97363987
С	-3.66011432	-2.39661667	-2.13804071
Н	-3.53560725	-0.27299588	-1.75072782

С	-3.68839301	-3.69548085	-1.61238744
С	-3.50766265	-5.25051464	0.44172076
С	0.95783134	-6.34834421	-2.27599538
С	2.58451622	-5.30258707	-0.69223455
Н	-0.50790761	-4.50289703	-3.46149332
С	-1.16193194	-4.77536591	1.62248139
С	0.17310417	-4.75275670	1.12380273
Н	-3.62245220	-2.26267929	-3.22328736
Н	-3.66277826	-4.55398271	-2.28343210
С	-3.93368632	-6.43011060	-0.45070151
С	-4.15627282	-5.41820287	1.82459061
Н	1.14894440	-7.29541607	-1.74807012
Н	1.65014164	-6.28087340	-3.13033158
Н	-0.07561232	-6.38849768	-2.64572059
Н	2.68242022	-6.29090064	-0.21775984
Н	2.80157868	-4.55030345	0.08113463
Н	3.35436259	-5.21763265	-1.47524798
Н	-1.45963642	-4.60028079	2.65623175
Н	1.07012383	-4.55755479	1.71131446
Н	-3.70372906	-7.37707847	0.06168725
Н	-3.39408775	-6.44201382	-1.40723217
Н	-5.01798776	-6.39310508	-0.64226120
Н	-3.83605307	-4.66478984	2.56010521
Н	-3.88973053	-6.40401010	2.23523251
Н	-5.25296718	-5.36505138	1.73839376
Th	-1.19758130	-2.68378510	-0.41589463

$[PaL^2]^+$	Total energy:	-28580.6741	3954 Hartree
С	0.22958624	-0.46991373	0.34308080
С	0.26456181	-1.26038227	1.51388292
С	1.32326145	-0.19961316	-0.68824827
Ν	-1.06244752	-0.09035423	0.06232942
Н	1.14011711	-1.67110140	2.01434812
С	-1.07730402	-1.28287384	2.01548090
С	0.99233080	-1.34738589	-1.65116304
С	1.15738032	1.18995781	-1.32574479
С	2.72823638	-0.29929494	-0.07430477
С	-1.84191527	-0.50476838	1.11728415
Н	-1.39761160	-1.71382154	2.96280854
С	-0.01026097	-1.20891347	-2.64471242
С	1.46880552	-2.64440151	-1.36890173
Н	1.84434765	1.30232045	-2.17960932
Н	1.39960540	1.96424371	-0.58152875

Η	0.12726184	1.37447941	-1.65842306
Н	3.49369496	-0.22826337	-0.86304133
Н	2.90306598	-1.22880258	0.48747188
Н	2.87801989	0.53523351	0.62754578
С	-3.35106828	-0.27841879	1.05878768
С	-3.69879815	-1.42677238	0.10221264
С	-3.83450844	-2.73401435	0.61379190
С	0.91984320	-3.80309865	-1.95631222
Ν	-1.21650481	-5.31910967	-0.58656001
С	-0.49385606	-2.34533710	-3.30932412
Н	-0.39420068	-0.22264893	-2.90648015
Н	2.23569225	-2.76200651	-0.60455192
С	-3.68522685	1.10836003	0.48455712
С	-4.00550810	-0.41283047	2.44238189
С	-3.59797110	-1.27006097	-1.30373956
Н	-3.90840469	-2.86551090	1.69240752
С	-3.77120864	-3.88259192	-0.20215408
С	1.17667553	-5.16855895	-1.30539808
С	-0.08207655	-3.63592794	-2.94610144
С	-1.97787642	-5.13037927	0.54346365
С	0.09341233	-5.09530567	-0.23124059
Н	-1.24079611	-2.22518328	-4.09889876
Н	-4.76741588	1.19243290	0.29630417
Н	-3.13574391	1.31880869	-0.44255608
Н	-3.39874257	1.88316235	1.21234254
Н	-5.10228465	-0.37351203	2.34965022
Н	-3.68322808	0.42480496	3.07955592
Н	-3.74125694	-1.34064679	2.97104239
С	-3.63526025	-2.39920575	-2.13486753
Н	-3.50917251	-0.27596302	-1.74252014
С	-3.66951073	-3.69716959	-1.60457017
С	-3.49737655	-5.24757523	0.44282532
С	0.93507761	-6.34844208	-2.26154375
С	2.58064846	-5.30372176	-0.69600444
Н	-0.52110070	-4.50420365	-3.43804251
С	-1.17554561	-4.64087461	1.59866996
С	0.16623208	-4.61817327	1.09686552
Н	-3.59310453	-2.26601564	-3.21942442
Н	-3.63517749	-4.55764242	-2.27319130
С	-3.90766028	-6.43048877	-0.44997022
С	-4.15234925	-5.41711675	1.82235642
Η	1.12408047	-7.29371983	-1.72974766
Н	1.62242496	-6.29014300	-3.12051301
Н	-0.10069202	-6.38497139	-2.62448200

Н	2.67660811	-6.29169066	-0.22040025
Н	2.80526697	-4.55145001	0.07457150
Н	3.34628369	-5.22430934	-1.48376048
Н	-1.47683488	-4.43647675	2.62492174
Н	1.06067592	-4.39368888	1.67592939
Н	-3.67340818	-7.37490045	0.06507516
Н	-3.36363893	-6.44063375	-1.40380996
Н	-4.99127446	-6.40199821	-0.64655596
Н	-3.83835522	-4.66319182	2.55933186
Н	-3.88359416	-6.40211255	2.23347962
Н	-5.24890046	-5.36899333	1.73106853
Pa	-1.19399588	-2.68520809	-0.40679460

$[UL^{2}]^{+}$	Total energy:	-29354.88866	6568 Hartree
С	0.23349349	-0.48681756	0.35141885
С	0.27262681	-1.24823171	1.53689087
С	1.31708199	-0.20837002	-0.68925337
Ν	-1.06202825	-0.12507192	0.06176010
Н	1.14982093	-1.65303124	2.03971500
С	-1.06811641	-1.27087220	2.03809458
С	0.98081214	-1.34798800	-1.66047216
С	1.14289903	1.18682328	-1.31282427
С	2.72836768	-0.30864757	-0.08893978
С	-1.83861901	-0.52184878	1.12599894
Н	-1.38796228	-1.69601474	2.98841526
С	-0.01413097	-1.20884412	-2.65352952
С	1.44133478	-2.64474909	-1.35948969
Н	1.82977553	1.31145720	-2.16505247
Н	1.38059417	1.95533584	-0.56121769
Н	0.11213294	1.36845800	-1.64494691
Н	3.48631518	-0.23515632	-0.88455087
Н	2.90952865	-1.23885835	0.46947378
Н	2.88402286	0.52469772	0.61296804
С	-3.34678201	-0.28719876	1.05421588
С	-3.69627391	-1.42705004	0.08793456
С	-3.80782259	-2.73344061	0.60286714
С	0.90844021	-3.79970627	-1.96477856
Ν	-1.21418398	-5.28546834	-0.57837208
С	-0.51611704	-2.34519509	-3.30742890
Н	-0.40120771	-0.22222372	-2.91068226
Н	2.19698658	-2.76319667	-0.58489983
С	-3.66541945	1.10565216	0.48488407
С	-4.01457883	-0.42277431	2.43183551

С	-3.60124898	-1.26957344	-1.31262794
Н	-3.86637781	-2.86552070	1.68182840
С	-3.76848604	-3.87883049	-0.21615158
С	1.17095983	-5.15956105	-1.30375965
С	-0.08572795	-3.63403628	-2.95453034
С	-1.97395079	-5.11612980	0.55617909
С	0.09805390	-5.08116214	-0.21866757
Н	-1.25988995	-2.22499673	-4.09895389
Н	-4.74625028	1.20112191	0.29430180
Н	-3.11171612	1.31351318	-0.44031064
Н	-3.37326280	1.87496559	1.21620224
Н	-5.11032710	-0.38160190	2.32925365
Н	-3.69703333	0.41374109	3.07274417
Н	-3.75661194	-1.35137008	2.96202151
С	-3.61771264	-2.39784120	-2.14788221
Н	-3.50725470	-0.27488425	-1.74981377
С	-3.67261160	-3.69485890	-1.61343247
С	-3.49264913	-5.23831029	0.44018156
С	0.92029773	-6.34767151	-2.24784651
С	2.58140692	-5.29114911	-0.70753735
Н	-0.52761070	-4.50375584	-3.44208037
С	-1.16775024	-4.65839122	1.61785670
С	0.17292914	-4.63570702	1.11647485
Н	-3.57938577	-2.26453668	-3.23181943
Н	-3.63321496	-4.55646960	-2.28085535
С	-3.88735960	-6.42921093	-0.44953347
С	-4.16132233	-5.40454221	1.81401336
Н	1.10755298	-7.28894294	-1.70843222
Н	1.60476023	-6.30014507	-3.10974966
Н	-0.11692096	-6.38244643	-2.60665364
Н	2.68332387	-6.27824828	-0.23149553
Н	2.81244805	-4.53758822	0.05973187
Н	3.33940158	-5.21211961	-1.50257233
Н	-1.46918080	-4.46038576	2.64551988
Н	1.06858718	-4.41730243	1.69635441
Н	-3.64586406	-7.36935910	0.06992341
Н	-3.33979590	-6.43696834	-1.40133303
Н	-4.97043881	-6.41249302	-0.65024361
Н	-3.85368996	-4.65002209	2.55292881
Η	-3.89748931	-6.38916634	2.22905642
Η	-5.25684878	-5.35574940	1.71240069
U	-1.20270002	-2.68204385	-0.43009214

 $[NpL^2]^+$

Total	energy: -30144	.46431324 Ha	artree
С	0.22828719	-0.48134275	0.34650493
С	0.26925218	-1.24516436	1.53267943
С	1.32015403	-0.20739841	-0.69058979
Ν	-1.06295939	-0.10839598	0.05983418
Н	1.14656752	-1.65246606	2.03321496
С	-1.06792013	-1.26776403	2.03268240
С	0.99637317	-1.34746250	-1.66694239
С	1.14943241	1.18694288	-1.31746763
С	2.72728396	-0.30593686	-0.07983224
С	-1.83773571	-0.51622943	1.11906756
Н	-1.38920342	-1.69532553	2.98140878
С	0.01364284	-1.20762146	-2.67010766
С	1.45706373	-2.64391661	-1.36985530
Н	1.84013926	1.31146186	-2.16661644
Н	1.38362031	1.95563156	-0.56503808
Н	0.11973373	1.36801692	-1.65292116
Н	3.49142848	-0.22898051	-0.86919702
Н	2.90615798	-1.23675853	0.47832195
Н	2.87526255	0.52628359	0.62498226
С	-3.34965798	-0.28633525	1.05556274
С	-3.71207645	-1.42702152	0.09362537
С	-3.82622200	-2.73320994	0.60560716
С	0.92408099	-3.79963787	-1.97113128
Ν	-1.21610014	-5.30107294	-0.58437754
С	-0.48235670	-2.34421259	-3.32499153
Η	-0.37309494	-0.22123937	-2.92865922
Η	2.20006618	-2.76350128	-0.58246208
С	-3.67345840	1.10542587	0.48593879
С	-4.00741975	-0.41978965	2.43842305
С	-3.63310350	-1.26917438	-1.30655110
Н	-3.86646399	-2.86606541	1.68591679
С	-3.78443180	-3.87918737	-0.21066197
С	1.17409813	-5.16034829	-1.30495131
С	-0.05785262	-3.63308903	-2.97099135
С	-1.97353991	-5.12003861	0.54792121
С	0.09250663	-5.08500243	-0.22456642
Н	-1.22488615	-2.22387950	-4.11857821
Η	-4.75508603	1.19997434	0.29945566
Н	-3.12220033	1.31324284	-0.44062943
Н	-3.37937822	1.87513046	1.21597391
Н	-5.10381900	-0.37429914	2.34474538
Η	-3.68142058	0.41546221	3.07665058

Н	-3.74858606	-1.34923998	2.96670742
С	-3.65491873	-2.39771139	-2.13880325
Н	-3.54028681	-0.27466495	-1.74438861
С	-3.70468759	-3.69462528	-1.60751736
С	-3.49574609	-5.23926743	0.44099940
С	0.92732567	-6.34714864	-2.25202092
С	2.58013971	-5.29572133	-0.69873866
Η	-0.49930035	-4.50235581	-3.45972724
С	-1.16805760	-4.66028473	1.61183930
С	0.16913383	-4.63763689	1.11188481
Η	-3.61903827	-2.26417640	-3.22346581
Η	-3.66659409	-4.55575958	-2.27562264
С	-3.89562850	-6.42862420	-0.44886924
С	-4.15469275	-5.40958027	1.81924526
Η	1.11106909	-7.28852327	-1.71172278
Η	1.61576293	-6.30042531	-3.11080300
Η	-0.10868611	-6.38076530	-2.61416360
Η	2.67449366	-6.28196695	-0.21950485
Η	2.80869723	-4.54130917	0.06845341
Η	3.34418939	-5.22184916	-1.48848966
Η	-1.47085708	-4.45933674	2.63850667
Η	1.06496475	-4.41653934	1.69043122
Η	-3.65192788	-7.36900103	0.06898924
Η	-3.35073845	-6.43550423	-1.40209842
Η	-4.97955595	-6.41186448	-0.64497490
Η	-3.84625193	-4.65387378	2.55662394
Η	-3.88233030	-6.39284968	2.23186386
Н	-5.25117445	-5.36714673	1.72510047
Np	-1.19145285	-2.68603455	-0.40049966

[PuL²]⁺ Total energy: -30949.11093064 Hartree

С	0.23293830	-0.47261776	0.35035588
С	0.27867477	-1.19870545	1.55952898
С	1.32526543	-0.20803382	-0.69152227
Ν	-1.06313218	-0.12916132	0.05108632
Н	1.15887924	-1.58613672	2.07161283
С	-1.05931819	-1.21734929	2.06304156
С	1.02594582	-1.34641418	-1.68206436
С	1.15099878	1.18713836	-1.31774823
С	2.73070796	-0.29826691	-0.07391835
С	-1.83791793	-0.51165718	1.12544576
Н	-1.37577402	-1.62545281	3.02214711

С	0.07323770	-1.20628681	-2.71239867
С	1.47826418	-2.64197531	-1.37785666
Н	1.84642041	1.31701582	-2.16222600
Н	1.37532631	1.95642007	-0.56295194
Н	0.12220382	1.36181069	-1.65993332
Н	3.49761900	-0.21256113	-0.85959832
Н	2.91387231	-1.23090254	0.48002503
Н	2.86999003	0.53179675	0.63522310
С	-3.35216818	-0.28906314	1.05625675
С	-3.73968898	-1.43042623	0.10007577
С	-3.84763032	-2.73514479	0.61317830
С	0.94939977	-3.79546035	-1.98363632
Ν	-1.21981394	-5.27909497	-0.58598658
С	-0.39692927	-2.33737174	-3.39463029
Н	-0.30955592	-0.21900347	-2.97529000
Н	2.19664773	-2.76454750	-0.56754721
С	-3.67123820	1.10291202	0.48267361
С	-4.00681657	-0.41300138	2.44215269
С	-3.71163018	-1.27190111	-1.30240306
Н	-3.85415851	-2.86830326	1.69480970
С	-3.81674312	-3.87930012	-0.20262533
С	1.17664802	-5.15767684	-1.30550629
С	0.00444218	-3.62454138	-3.01839409
С	-1.97536423	-5.12967666	0.55157511
С	0.09635608	-5.09092502	-0.22113481
Н	-1.11703064	-2.21390370	-4.20848864
Н	-4.75321365	1.20320268	0.30108019
Н	-3.12315465	1.30286854	-0.44769746
Н	-3.36896410	1.87401499	1.20786775
Н	-5.10299892	-0.35956746	2.35089992
Н	-3.67286443	0.42129637	3.07749883
Н	-3.75430229	-1.34374879	2.97137345
С	-3.76521038	-2.39562186	-2.13537423
Н	-3.63033068	-0.27607470	-1.74051414
С	-3.77729550	-3.69130829	-1.59975390
С	-3.50019398	-5.23896392	0.44373757
С	0.92366496	-6.34420504	-2.25236171
С	2.58145146	-5.30324663	-0.69727388
Н	-0.42854722	-4.49399466	-3.51517481
С	-1.16196380	-4.71187563	1.62638324
С	0.17780239	-4.69375729	1.12753779
Η	-3.75964359	-2.26235671	-3.22089940
Η	-3.74509226	-4.55264543	-2.26865758
С	-3.89700862	-6.42888477	-0.44826208

С	-4.15402268	-5.41897636	1.82393350
Н	1.09794077	-7.28651360	-1.71055214
Н	1.61501608	-6.30425374	-3.10918314
Н	-0.11174267	-6.36905264	-2.61743603
Н	2.66798258	-6.28861791	-0.21478106
Н	2.81548527	-4.54730275	0.06686337
Н	3.34626473	-5.23767655	-1.48693305
Н	-1.46133224	-4.53287627	2.65857095
Н	1.07495910	-4.49404269	1.71217015
Н	-3.64481607	-7.36958421	0.06489260
Н	-3.35617852	-6.42827802	-1.40404371
Н	-4.98186252	-6.41857445	-0.63958593
Н	-3.85185456	-4.66065504	2.56142208
Н	-3.87138187	-6.40018202	2.23462190
Н	-5.25099834	-5.38681406	1.73231609
Pu	-1.17449271	-2.69204365	-0.35538059

 $[K(C_{24}H_{12})]$

Total energy: -1523.260785 Hartree K 2.50223501 -2.60353807 1.91615846 C 1.28651404 -2.88879857 -1.06178767 C 2.33877296 -3.73690072 -0.83885431 C 3.27252244 -4.38778540 -0.35213644 C 3.56671083 -0.41881362 0.09951683 C 2.11354853 -0.56474340 -0.08466852 C 1.23299619 -1.54975082 -0.64821535 C 4.90878425 -1.16573670 -0.03568562 C 3.94743216 0.97729073 0.16795051 C 5.31255041 1.13799184 -0.09199788 C 5.88920943 -0.11791514 -0.26157668 C 5.99438105 2.36054417 -0.14058098 C 5.20141346 3.51812869 0.10752632 C 3.83781520 3.39318414 0.35321766 C 3.17288827 2.13118100 0.36515033 C 1.77741954 1.88751941 0.51235148 C 1.32026056 0.62231587 0.27187081 C 4.28373739 -4.66266224 0.54995522 C 5.15525098 -3.66743198 0.94245485 C 5.54739896 -2.42557392 0.20559715 C 6.94463334 -2.54527423 -0.12322936 C 7.79887446 -1.51681324 -0.47793544 C 7.27555658 -0.20887208 -0.46895446 C 7.39755603 2.26081765 -0.42343483

C 8.00087560 1.02832000 -0.58158075 H 0.23634550 0.46901134 0.28297195 H 1.07533996 2.69618247 0.73754796 H 0.36615033 -3.29655380 -1.49558008 H 0.22800057 -1.13715663 -0.78814887 H 5.66355853 4.50969133 0.10119632 H 3.24110913 4.29384597 0.52966031 H 4.38140486 -5.66185865 0.99539901 H 5.90189765 -3.95724555 1.69273324 H 7.36566600 -3.55051433 -0.02477755 H 8.85457024 -1.71574684 -0.68294602 H 7.99886512 3.17174745 -0.50356167 H 9.07600965 0.97896935 -0.78156163

 $[K(C_{24}H_{12})]^+$

Total energy: -1523.094310 Hartree K 3.30132701 -1.74653987 2.59961576 C 1.13293624 -2.93142965 -0.86746246 C 1.96967195 -3.64194951 -0.03132092 C 2.89176589 -4.09692997 0.63430151 C 3.55032051 -0.48283383 -0.06264949 C 2.14709043 -0.59045449 -0.38535262 C 1.30130553 -1.59091274 -1.04320627 C 4.91051159 -1.22540104 -0.18402900 C 3.92251540 0.89761623 0.20618554 C 5.29806483 1.07473124 0.05904543 C 5.88363669 -0.15525051 -0.24363749 C 5.96948279 2.29692528 0.12615481 C 5.15234625 3.43401388 0.42643319 C 3.78314286 3.29875745 0.55618873 C 3.12196754 2.03434653 0.39625896 C 1.72965350 1.81387031 0.28892523 C 1.31408444 0.57635892 -0.13983891 C 4.16937131 -4.46937989 1.01796511 C 5.27719685 -3.77272658 0.60857468 C 5.56929050 -2.51092347 -0.06943180 C 6.97088543 -2.55420729 -0.47165484 C 7.79227047 -1.48598708 -0.72282758 C 7.26429286 -0.19478417 -0.49005329 C 7.37285854 2.24666212 -0.15232281 C 7.98478194 1.04441847 -0.45555838 H 0.24635502 0.44274836 -0.33495959 H 1.00494950 2.61751882 0.44632115

H 0.30676344 -3.43682973 -1.37724905 H 0.55114427 -1.12250305 -1.68982004 H 5.61038887 4.42220011 0.52351980 H 3.16999973 4.18422274 0.74626120 H 4.32773366 -5.41581207 1.54686938 H 6.20564236 -4.30069713 0.85231093 H 7.41018918 -3.55388506 -0.52680984 H 8.83496378 -1.64131892 -1.01101574 H 7.96345174 3.16662371 -0.13665745 H 9.05590233 1.02679734 -0.67502953