Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemis Supplementary Materials Optical properties of 3-substituted indole Jagdeep Kumar^a, Naresh Kumar^a, Prasanta Kumar Hota^a*

Figure S1. Absorption spectra of compounds, 2-4 (x 10^{-5} M) in (i) hexane (ii) THF (iii) MeOH and (iv) DMF; (a) **1**, (b) **2**, (c) **3**, (d) **4**, (e) **5**, (f) **6**, (g) **7**, (h) **8**, (i) **9**.

Figure S2. Fluorescence spectra of compounds $(0.5 \times 10^{-5} \text{M})$ in (i) hexane (ii) THF (iii) MeOH and (iv) DMF; (a) **1**, (b) **2**, (c) **3**, (d) **4**, (e) **5**, (f) **6**, (g) **7**, (h) **8**, (i) **9**.

Figure S3. Tauc plot, thv vs. hv (eV) of ethenyl indoles (a) 1-6 (b) 1, 7-9.

Figure S4. TDDFT computed absorption spectrum, molar absorption coefficient and oscillator strength of 1-9.

Figure S5. Comparative chart of TDDFT computed optical band gap and HOMO-LUMO energy of 1-9.

Figure S6. Molecular orbital (HOMO, LUMO) diagram of indole compounds 1 (nitro), 3 (-H) and 6 (amine).

Figure S7. Comparative chart of first hyperpolarizability (β_{CT}) of **1–9** with (a) polarizability, HOMO, LUMO energy and relative Hammett substituent constant, (b) polarizability, and % of ionic character and % of charge separation in the ground and excited state of **1–9**.

	Radius of	μ_{g}	F(ɛ,n)		Δμ	μ_{e}	π*	
	molecule	(Debye)	Slope	R	(Debye)	(Debye)	Slope	R
	(A ^o)		(m ₁)				(10-3)	
1	4.53	8.39	4245	0.91	9.86	18.25	-5.14	0.98
2	4.47	3.99	1384	0.99	5.52	9.51	-0.93	0.85
3	4.38	2.57	1304	0.99	5.19	7.76	-1.32	0.99
4	4.55	1.05	1434	0.99	5.77	6.82	-1.43	0.99
5	4.43	1.37	-1847	0.92	6.29	7.66	-2.69	0.91
6	4.45	2.44	805	0.85	4.18	6.62	-0.71	0.96
7	4.74	8.94	3397	0.92	9.44	18.38	-4.03	0.94
8	4.75	4.34	7645	0.97	14.21	18.55	-7.38	0.98
9	5.12	9.32	9563	0.95	17.78	27.10	-9.22	0.97

Table S1. Change of dipole moment ($\Delta\mu$) obtained from the slope of the McRay plot, Stokes' shift vs. solvent polarity parameter, F(ϵ ,n), polarizibility (π *) and the ground state dipole moment (μ_g) obtained from TDDFT calculation of **1-9** (No. of points used, N = 4)

Table S2. TDDFT computed absorption wavelength maximum ($\lambda_{abs max}$), electronic transition energy (ΔE , eV), oscillator strength (*f*), ground state dipole moment (μ_g), highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy.

Com	$\lambda_{abs max}$	f	Major	НОМО	LUMO	(ΔE)	(μ_g)	(β)*
	(nm)		transition	(eV)	(eV)	(eV)	Debye	(in 10 ⁻³⁰)
			(HOMO→					Esu ⁻¹ .cm ⁵
			LUMO)					
			(%)					
1	434.3	0.59	>99%	-5.51	-2.46	3.05	8.39	115
2	343.4	0.77	>99%	-5.10	-1.28	3.82	3.99	20
3	339.4	0.66	>99%	-5.01	-1.15	3.86	2.57	9
4	339.8	0.67	>99%	-4.81	-0.97	3.84	1.05	17
5	336.2	0.59	>99%	-4.62	-0.83	3.79	1.37	24
6	338.6	0.60	>99%	-4.82	-0.97	3.85	2.44	9
7	446.1	0.59	>99%	-5.38	-2.39	2.99	8.94	106
8	423.6	0.53	>99%	-5.89	-2.72	3.17	4.34	43
9	419.3	0.63	>99%	-5.77	-2.58	3.19	9.32	90

* first hyperpolarizability (β) obtained experimentally using solvatochromism method

	Absorption	Emission	Relative	% of charge	e separation	(β)
	nm (eV)	nm (eV)	Hammett	(% ionic	character)	(in 10 ⁻³⁰)
Compound			constant	Ground	Excited	Esu ⁻¹ cm ⁵
				State	State	
				Ao	Aº	
1	413 (3.00)	590 (2.10)	0.81	1.76 (19.5)	3.84 (42.4)	115
2	335 (3.70)	395 (3.14)	0.24	0.84 (9.3)	2.00 (22.4)	20
3	327 (3.79)	396 (3.13)	0	0.54 (6.1)	1.63 (18.6)	9
4	327 (3.79)	404 (3.07)	-0.28	0.22 (2.4)	1.43 (15.8)	17
5	322 (3.85)	390 (3.18)	-0.38	0.29 (3.2)	1.61 (18.2)	24
6	324 (3.82)	405 (3.06)	-0.57	0.51 (5.7)	1.39 (15.6)	9
7	418 (2.96)	558 (2.22)	0.95	1.88 (19.8)	3.87 (40.8)	106
8	374 (3.31)	563 (2.20)	0.34	0.91 (9.6)	3.90 (41.1)	43
9	370 (3.35)	588 (2.11)	0.08	1.96 (19.1)	5.70 (55.7)	90

Table S3. Absorption, fluorescence wavelength, relative Hammett constant, % of chargeseparation (% of ionic character) of 1-9.

Characterization data of synthesized ethenyl indoles (1-9)^{1,2}

3-(4-Nitrophenylethenyl-*E***)-N-H-indole** (1)^{1,2}: Yield 31%; M.p. 195-196 °C; UV-vis (MeOH): λ_{max} nm (ε, 1 mol⁻¹cm⁻¹) 413 (27,900); IR (KBr): ν_{max} (cm⁻¹) 3370 (NHst), 3048 (C-Hst), 1626 (vinyl C=Cst), 1585, 1490, 1425 (Ar C=Cst), 1520 (Ar-NO₂, N=O Asymst), 1330 (Ar-NO₂, N=O Sym-st); ¹H NMR (CDCl₃, 500 Hz): □δ 7.17

(1H, d, J = 15.8 Hz, -C=CH-Ar), 7.27-7.31 (2H, m, -C₅-H, and -C₆-H), 7.44 (1H, d, J= 7.5 Hz, -C₄-H), 7.47 (1H, d, J = 2.7 Hz, -C₂-H), 7.50 (1H, d, J = 15.8 Hz, -CH=C-Ar), 7.61 (2H, d, J = 8.9 Hz, -Ar), 8.01 (1H, d, J= 6.9 Hz, -C₇-H), 8.21 (2H, d, J = 8.9 Hz, -ArNO₂), 8.35 (1H, s, br, -NH); ¹³C NMR (CDCl₃, 500 MHz): δ 145.8 (-C₁₅), 145.3 (-C₁₂), 136.9 (-C₈), 126.7 (-C₁₁), 125.8 (-C₁₃, -C₁₇, -C₂), 125.7 (-C₉), 125.2 (-C₁₀), 123.1 (-C₁₄, -C₁₆), 122.8 (-C₆), 121.0 (-C₅), 120.2 (-C₄), 115.0 (-C₇), 111.7 (-C₃); MS (EI⁺): m/z 264 (M⁺); Analytical CHNS calculated for 1: C₁₆H₁₂N₂O₂ (264.24) (%) C 72.71, H 4.57, N 10.59, Found C 72.65, H 4.55, N 10.58.

3-(4-Chlorophenylethenyl-*E***)-N-H-indole** (2)²: Yield 56%; M.p. 191-192 °C; UV-vis (MeOH): λ_{max} nm (ϵ , 1 mol⁻¹cm⁻¹) 335 (18,800); IR (KBr): ν_{max} (cm⁻¹) 3381 (NHst), 3048 (C-Hst), 1632 (vinyl C=Cst), 1524, 1488, 1455, 1403 (Ar, C=Cst); ¹H NMR (CDCl₃, 500 Hz): $\Box \delta$ 7.08 (1H, d, J = 16.5 Hz, -C=CH-Ar), 7.22-7.26 (2H, m, -C₅-H, -C₆-

H), 7.29 (1H, d, J = 16.5 Hz, -CH=C-Ar), 7.31 (2H, d, J = 8.2 Hz, -Ar), 7.38 (1H, d, J = 2.0 Hz, -C₂-H), 7.41 (1H, d, J= 7.6 Hz, -C₄-H), 7.44 (2H, d, J = 8.2 Hz, -Ar-Cl), 7.98 (1H, d, J= 8.2 Hz, -C₇-H), 8.21 (1H, s, br, -NH); ¹³C NMR (CDCl₃, 500 MHz): δ 137.0 (-C₈), 136.8 (-C₁₂), 131.9 (-C₁₅), 131.2, 128.7 (-C₁₃, C₁₇), 126.8, 125.3 (-C₁₄, C₁₆), 124.2 (-C₁₁), 124.0 (-C₉), 122.8 (-C₁₀), 122.3 (-C₆), 120.5 (-C₅), 120.1 (-C₄), 115.3 (-C₇), 111.4 (-C₃); MS (EI⁺): m/z 253 (M⁺);

Analytical CHNS calculated for **2**: C₁₆H₁₂NCl (253.69) (%) C 75.73, H 4.76, N 5.52, Found C 75.70, H 4.74, N 5.51.

3-(phenylethenyl-*E***)-N-H-indole (3)²**: Yield 45%; M.p. 209-210 °C; UV-vis (MeOH): λ_{max} nm (ϵ , 1 mol⁻¹cm⁻¹) 327 (10,800); IR (KBr): ν_{max} (cm⁻¹) 3381 (NHst), 3036 (C-Hst), 1630 (vinyl C=Cst), 1594, 1524, 1455, 1418 (Ar, C=Cst); ¹H NMR (CDCl₃, 500 Hz): $\Box \delta$ 7.08 (1H, d, J = 15.8 Hz, -C=CH-Ar), 7.15-7.22 (3H, m, -C₅-H, -C₆-H and

-Ar-H), 7.29 (1H, d, J = 2.7 Hz, -C₂-H), 7.31 (2H, d, J = 7.5 Hz, -Ar), 7.33 (1H, d, J = 15.8 Hz, -CH=C-Ar), 7.34 (1H, d, J= 9.0 Hz, -C₄-H), 7.47 (2H, d, J = 7.5 Hz, -Ar), 7.95 (1H, d, J= 7.6 Hz, -C₇-H), 8.11 (1H, s, br, -NH); ¹³C NMR (CDCl₃, 500 MHz): δ 138.5 (-C₁₂), 136.8 (-C₈), 128.6 (-C₁₁), 126.6 (-C₁₄, C₁₆, C₂), 125.7 (-C₁₃, C₁₇), 125.5 (-C₁₅), 123.7 (-C₉), 122.7 (-C₁₀), 121.6 (-C₆), 120.4 (-C₅), 120.2 (-C₄), 115.6 (-C₇), 111.4 (-C₃); MS (EI⁺): m/z 219 (M⁺); Analytical CHNS calculated for **3**: C₁₆H₁₃N (219.25) (%) C 87.63, H 5.97, N 6.38, Found C 87.53, H 5.96, N 6.37.

3-(4-Methoxyphenylethenyl-*E***)-N-H-indole** (4)²: Yield 34%; M.p. 232-233 °C; UV-vis (MeOH): λ_{max} nm (ϵ , 1 mol⁻¹cm⁻¹) 327 (17,800); IR (KBr): ν_{max} (cm⁻¹) 3377 (NHst), 3034 (C-Hst), 1634 (vinyl C=Cst), 1604,1574, 1505, 1456, 1428 (Ar, C=Cst), 1244 (Ar-O-Cst); ¹H-NMR (CDCl₃, 500 Hz): $\Box \delta$ 3.83 (3H, s, -OCH₃),

6.90 (2H, d, J = 8.9 Hz, -Ar-OCH₃), 7.09 (1H, d, J = 16.4 Hz, -CH=C-Ar), 7.19 (1H, d, J = 16.4 Hz, -C=CH-Ar), 7.21-7.25 (2H, m, -C₅-H, -C₆-H), 7.35 (1H, d, J=2.7 Hz, -C₂-H), 7.39 (1H, d, J = 7.6 Hz, -C₇-H), 7.46 (2H, d, J = 8.9 Hz, -Ar), 7.99 (1H, d, J = 7.6 Hz, -C₄-H), 8.16 (1H, br, s, -NH); ¹³C NMR (CDCl₃, 500 MHz): δ 158.5 (-C₁₅), 136.8 (-C₈), 131.3 (-C₁₁), 130.4 (-C₁₃, C₁₇), 126.8 (-C₁₂), 125.6 (-C₂), 125.2 (-C₉), 123.1 (-C₁₀), 122.6 (-C₆), 120.3 (-C₅), 120.1 (-C₄), 119.6,

115.8 (- C_{14} , C_{16}), 114.0 (- C_7), 111.3 (- C_3), 55.3 (- C_{18}); MS (EI⁺): m/z 249 (M⁺); Analytical CHNS calculated for 4: $C_{17}H_{15}NO$ (249.27) (%) C 81.89, H 6.06, N 5.61, Found C 81.81, H 6.04, N 5.60.

3-(4-Hydroxyphenylethenyl-*E***)-N-H-indole (5)**²: Yield 33%; M.p. 225-226 °C; UV-vis (MeOH): λ_{max} nm (ε, 1 mol⁻¹cm⁻¹) 322 (24,400); IR (KBr): □v_{max} (cm⁻¹) 3379 (NHst), 3126 (OHst), 3030 (C-Hst), 1636 (vinyl C=Cst), 1587, 1540, 1505, 1456, 1420, 1358 (Ar, C=Cst); ¹H-NMR (CDCl₃, 500 Hz): □δ 4.74 (3H, s, -OH), 6.83 (2H,

d, J = 8.2 Hz, -Ar-OH), 7.08 (1H, d, J = 16.5 Hz, -CH=C-Ar), 7.18 (1H, d, J = 16.5 Hz, -C=CH-Ar), 7.21-7.23 (2H, m, -C₅-H, -C₆-H), 7.35 (1H, d, J=2.7 Hz, -C₂-H), 7.39 (1H, d, J = 6.2 Hz, -C₇-H), 7.41 (2H, d, J = 8.2 Hz, -Ar), 7.98 (1H, d, J = 8.2 Hz, -C₄-H), 8.16 (1H, br, s, -NH); MS (EI⁺): m/z 235 (M⁺); Analytical CHNS calculated for **5**: $C_{16}H_{13}NO$ (235.25) (%) C 81.67, H 5.57, N 5.95, Found C 81.61, H 5.55, N 5.93.

3-[4-Aminophenylethenyl-*E***]-N-H-indole (6)**^{1,2}: Yield 47%; M.p. 263-264 °C; UV-vis (MeOH): λ_{max} nm (ϵ , 1 mol⁻¹cm⁻¹) 324 (12,200); IR (KBr): $\Box v_{max}$ (cm⁻¹) 3394, 3341 (H-N-Hst), 3026 (C-Hst), 1610 (vinyl C=Cst), 1507, 1456, 1420, 1337 (Ar, C=Cst); ¹H-NMR (CDCl₃, 500 Hz): $\Box \delta$ 3.70 (2H, br, s, -NH₂), 6.69 (2H, d, J = 8.2

Hz, -Ar-NH₂), 7.05 (1H, d, J = 15.8 Hz, -CH=C-Ar), 7.14 (1H, d, J = 15.8 Hz, -C=CH-Ar), 7.18-7.25 (2H, m, -C₅-H, -C₆-H), 7.33 (1H, d, J=2.7 Hz, -C₂-H), 7.34 (2H, d, J = 8.9 Hz, -Ar), 7.38 (1H, d, J = 7.5 Hz, -C₇-H), 7.97 (1H, d, J = 7.5 Hz, -C₄-H), 8.13 (1H, br, s, -NH); ¹³C NMR (CDCl₃, 500 MHz): δ 145.2 (-C₁₅), 136.7 (-C₈), 129.3 (-C₁₁), 126.9 (-C₁₃, C₁₇), 125.8 (-C₂), 125.6 (-C₉), 122.7 (-C₁₀), 122.5 (-C₁₂), 120.2 (-C₆), 120.1 (-C₅), 118.1 (-C₄), 115.9 (-C₁₄, C₁₆), 115.3 (-

C₇), 111.3 (-C₃); MS (EI⁺): m/z 234 (M⁺); Analytical CHNS calculated for **6**: C₁₆H₁₄N₂ (234.26) (%) C 82.01, H 6.02, N 11.95, Found C 81.95, H 6.01, N 11.93.

3-[4-Nitrophenylethenyl-*E***]-N-ethyl indole (7)¹** : Yield 80%; M.p. 135-136 °C; UV-vis (MeOH) $\Box \lambda_{max}/nm$ ($\Box \epsilon$, 1 mol⁻¹cm⁻¹): 418 (18,823); IR (KBr) $\Box v_{max}$, (cm⁻¹): 1596,1331 (NO₂), 1627 (C=C); ¹H NMR (CDCl₃, 300 Hz): $\Box \delta$ 1.51 (t, J = 7.32 Hz, 3H, -CH₃), 4.21 (q, J = 7.32 Hz, 2H, -CH₂), 7.12 (d, J = 16.1 Hz, 1H, -CH=C-ArNO₂), 7.23-7.34 (m, 2H, -C₅C₆), 7.38 (s, 1H, -C₇), 7.40 (s, 1H, -C₂), 7.49 (

d, J = 16.4 Hz, 1H, -C=CH-ArNO₂), 7.59 (d, J = 8.7 Hz, 2H, -Ar), 7.98-8.00 (m, 1H, -C₄), 8.20 (d, J = 8.7 Hz, 2H, -ArNO₂); Analytical CHNS calculated for 7: C₁₈H₁₆N₂O₂ (292.3)(%): C 73.99, H 5.51, N 9.58; found C 73.99, H 5.09, N 9.51.

3-[4-Nitrophenylethenyl-*E***]-N-acetyl indole (8)**: Yield 83%; M.p.: 216-218 °C; UV-vis (MeOH) $\Box \lambda_{max}/nm$ ($\Box \varepsilon$, 1 mol⁻¹cm⁻¹): 373 (9464); IR (KBr) $\Box v_{max}$, (cm⁻¹): 1584, 1334 (NO₂) 1643 (C=C), 1703 (C=O); ¹H-NMR (CDCl₃, 300 MHz): $\Box \delta$ 2.69 (3H, s, -COCH₃), 7.27 (1H, d, J = 16.48 Hz, -CH=C-ArNO₂), 7.39 (1H, d, J = 16.48, -C=CH-ArNO₂), 7.40-7.47 (2 H, m, H at -C₅ and -C₆),

7.64 (2H, d, J = 8.79 Hz, -Ar), 7.66 (1H, s, H-C₂), 7.90-7.93 (1H, m, H-C₇), 8.24 (2H, d, J = 8.79 Hz, -ArNO₂), 8.50 (1H, m, H-C₄); Analytical CHN calculated for **8**: $C_{18}H_{14}N_2O_3$ (306.3)(%) C, 70.58; H, 4.61; N, 9.15. Found C, 70.55; H, 4.60; N, 9.11.

3-[4-Nitrophenylethenyl-*E***]-N-benzene** sulphonyl-indole (9)¹: Yield 80%; M.p. 263-264 °C; UV-vis (MeOH): λ_{max} nm (ϵ , 1 mol⁻¹ cm⁻¹) 370 (21,500); IR (KBr): v max (cm⁻¹) 3100 (C-Hst), 1620 (vinyl C=Cst), 1588, 1421 (Ar C=Cst), 1505 (Ar-NO₂, N=O Asymst), 1340 (Ar-NO₂, N=O Sym-st), 1180 (S=Ost); ¹H NMR (CDCl₃, 500 Hz): $\Box \delta$ 7.22 (1H, d, J = 15.8 Hz, -C=CH-Ar), 7.34 (1H, d, J = 15.8 Hz, -C=CH-Ar), 7.34 (1H, d, J = 15.8 Hz, -C=CH-Ar), 7.34 (1H, d, J = 15.8 Hz, -C=CH-Ar), 7.40

(1H, t, J= 7.5 Hz, -ArSO₂), 7.47 (1H, t, J= 7.5 Hz, -ArSO₂), 7.57 (1H, t, J= 7.5 Hz, -ArSO₂), 7.63 (2H, d, J= 7.5 Hz, -ArSO₂), 7.93 (2H, d, J = 8.9 Hz, -Ar), 8.23 (2H, d, J = 8.9 Hz, -ArNO₂), 7.82 (1H, s, -C₂-H), 7.86 (1H, d, J= 6.9 Hz, -C₇-H), 8.04 (1H, d, J= 7.5 Hz, -C₄-H); ¹³C NMR (CDCl₃, 500 MHz): δ 146.7 (-C₁₅), 143.8 (-C₁₂), 137.8 (-C₁₈), 135.5 (-C₈), 134.1 (-C₂₁), 129.4 (-C₁₁), 128.5 (-C₂₀, C₂₂), 127.1 (-C₁₃, C₁₇, C₂), 126.8 (-C₉), 126.5 (-C₁₉, C₂₃), 125.5 (-C₁₀), 125.4 (-C₄), 124.2 (-C₆), 123.9 (-C₁₄, C₁₆), 120.4 (-C₅), 119.9 (-C₇), 113.8 (-C₃); Analytical CHNS calculated for **9**: C₂₂H₁₆N₂O₄S (404.39) (%) C 65.33, H 3.98, N 6.92, S 7.92 Found C 65.31, H 3.96, N 6.92, S 7.90.

References

- (a) A. K. Singh, P.K. Hota, Photoreactivity of donor-acceptor ethenes. Indian J. Chem. B.
 42 (2003) 2048-2053, (b) A. K. Singh, P.K. Hota, Fluorescence and photoisomerization studies of *p*-nitrophenyl substituted indolic ethenes, J. Phys. Org. Chem. 19 (2006) 43-52.
- J. Kumar, N. Kumar, N. Sati, P. K. Hota, Antioxidant Properties of ethenyl indole: DPPH assay and TDDFT studies, New J. Chem. 44 (2020) 8960-8970.