Supplementary Information

Intrinsic Kinetic Study of 1-Butene Isomerization over Magnesium Oxide Catalyst via Berty Stationary Catalyst Basket Reactor

Khunnawat Ountaksinkul, ${ }^{\text {a }}$ Sippakorn Wannakao, ${ }^{\text {b }}$ Piyasan Praserthdam, ${ }^{\text {a }}$ and Suttichai Assabumrungrat ${ }^{\text {a }, ~}{ }^{\text {c* }}$

Results and Discussion

Table S1: The slope and intercept of linear equations in Figure 10.

	k_{1}	k_{2}	K_{A}	K_{B}	K_{C}
m (slope)	-9454.91	-7399.57	1997.88	1614.09	1630.49
C (intercept)	2.203	-0.487	-3.298	-1.297	-1.229

From the Arrhenius's equation as shown in equation 10, this equation was rewritten into the form of the linear equation in equation S1.

$$
\begin{align*}
& k_{i}=A_{0, i} \exp \left(\frac{-E_{a, i}}{R T}\right) \tag{10}\\
& \ln \left(k_{i}\right)=\frac{-E_{a, i}}{R T}+\ln \left(A_{0, i}\right) \tag{S1}
\end{align*}
$$

Therefore, the slope (m) and intercept (C) for $\ln \left(k_{1}\right)$ and $\ln \left(k_{2}\right)$ in Figure 10 can be compared with $-E_{a, i} / R$ and $\ln \left(A_{0, i}\right)$ in equation S1, respectively. After that, the activation energies (${ }^{E_{a, i}}$) and pre-exponential factor according to Arrhenius's equation ($A_{0, i}$) can be calculated from these correlations. For example, the $E_{a, 1}$ can be calculated by the slope of $\ln \left(k_{1}\right)$, which equals to -9454.9 and gas constant is $8.314(\mathrm{~J} / \mathrm{mol} / \mathrm{K})$ as shown in equations S 2 .

$$
\begin{equation*}
m=-9454.9=\frac{-E_{a, 1}}{8.314} \tag{S2}
\end{equation*}
$$

Then:

$$
\begin{equation*}
E_{a, 1}=78.608 \mathrm{~kJ} / \mathrm{mol} \tag{S3}
\end{equation*}
$$

For pre-exponential factor according to Arrhenius's equation (${ }^{A_{0, i}}$):

$$
\begin{equation*}
C=2.203=\ln \left(A_{0,1}\right) \tag{S4}
\end{equation*}
$$

Therefore:

$$
\begin{equation*}
A_{0,1}=9.052 \tag{S5}
\end{equation*}
$$

For deriving the van't Hoff equation, the correlation of adsorption equilibrium constant at different temperatures, T_{1} and T_{2} were given below.

$$
\begin{align*}
& \ln \left(K_{1}\right)=\frac{-\Delta H_{i}}{R T_{1}}+\frac{\Delta S}{R} \tag{S6}\\
& \ln \left(K_{2}\right)=\frac{-\Delta H_{i}}{R T_{2}}+\frac{\Delta S}{R} \tag{S7}
\end{align*}
$$

Then subtraction yields:

$$
\begin{equation*}
\ln \left(K_{1}\right)-\ln \left(K_{2}\right)=\frac{-\Delta H_{i}}{R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right] \tag{S8}
\end{equation*}
$$

which equation $\mathrm{S8}$ is equal to the van't Hoff equation as shown in equation 11. Consequently, the slope $\left({ }^{m}\right)$ and intercept $\left({ }^{C}\right)$ of $\ln \left(K_{A}\right), \ln \left(K_{B}\right)$, and $\ln \left(K_{C}\right)$ in Figure 10 can be also compared with $-\Delta H_{i} / R$ and $\Delta S / R$ in equation S 6 or S 7 . The adsorption enthalpies $\left(H_{i}\right)$ can be interpreted from the slope of graphs $\ln \left(K_{A}\right)$, ln $\left(K_{B}\right)$, and $\ln \left(K_{C}\right)$. In case of $\ln \left(K_{A}\right)$, the slope of graph is equal to 1997.88, so the ΔH_{i} can be estimated as shown in equations S9, and S10.

$$
\begin{gather*}
K_{i}=K_{0, i} \exp \left(\frac{-\Delta H_{i}}{R}\left[\frac{1}{T}-\frac{1}{T_{0}}\right]\right) \tag{11}\\
m=1997.88=\frac{-\Delta H_{A}}{8.314} \tag{S9}\\
\Delta H_{A}=-16.610 \mathrm{~kJ} / \mathrm{mol} \tag{S10}
\end{gather*}
$$

However, the $\Delta S / R$ was not used in van't Hoff equation. For van't Hoff equation, if we know the equilibrium constant at any temperature and the enthalpy, we can determine K at any other temperature. For this research, the reference temperature was fixed at 723.15 K . Therefore, the adsorption coefficients at the reference temperature (${ }^{(}{ }_{0, i}$) were represented by the adsorption coefficients at 723.15 K . The values of ΔH_{i} and $K_{0, i}$ were tabulated in Table 4.

