Electronic Supplementary Information

One-pot synthesis of indoles and quinolinones from *ortho*-tosylaminophenyl-substituted *para*-quinone methides

Junwei Wang,[‡]* Xiang Pan,[‡] Quanjin Rong, Lei Zhao, Lin Zhao, Weichen Dai, Kun Zhao,* Lihong Hu*

Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China

Table of Contents

Page

1.	General information	S2
2.	General procedures:	
	2.1 Procedure A for the synthesis of substrates 1a-g	S3
	2.2 Procedure B for the synthesis of products 3a-j	
	S4	
	2.3 Procedure C for the synthesis of products 4a-t	
	S4	
	2.4 Procedure D for the synthesis of products 6a-m	S4
	2.5 Procedure E for the synthesis of product 7	S5
3.	Characterization data for 3a-j	S6
4.	Characterization data for 4a-t	S9
5.	Characterization data for 6a-m	S17
6.	Characterization data for 7	- S22
7.	Characterization data for 11 and 12	- S22
8.	X-ray crystal structure of 4d	- S24
9.	NMR Spectra	- S26

^{*} Corresponding author.

E-mail address: jwwang@njucm.edu.cn; kunzhao13@gmail.com; lhhu@njucm.edu.cn

[‡]J. Wang and X. Pan contributed equally

1. General information

- Chemicals were purchased from Acros or Aldrich and used without further purification unless otherwise noted. Solvents were predistilled according to standard laboratory methods.
- Chromatographic purification of the products was performed on Merck silica gel 60, particle size 0.040-0.063 mm (230-240 mesh, flash).
- Analytical TLC: SIL G-25 UV254 from MACHEREY&NAGEL. Visualization of the developed TLC plates was performed with ultraviolet irradiation (254 nm) or by staining with basic potassium permanganate solution.
- Melting points were determined using a Büchi 510 apparatus and are uncorrected.
- Mass spectra were acquired on a Finnigan SSQ7000 (EI/CI) spectrometer and high resolution mass spectra on a Finnigan MAT 95 (EI/CI) or on a ThermoFisher Scientific LTQOrbitrap XL or Thermo Scientific Q Exactive Plus.
- ¹H- and ¹³C- NMR spectra were recorded at ambient temperature on Bruker AV-500, VNMRS 600 and Inova 400 instruments. The chemical shifts are reported in ppm downfield of tetramethylsilane (TMS) and referenced to residual solvent peaks resonance as internal standard. The order of citation in parentheses is a) multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd= doublet of doublet, ddd= doublet of doublet of doublet, td = triplet of doublet, m = multiplet), b) coupling constants, c) number of protons. Coupling constants (*J*) are reported in Hertz (Hz).

2. General procedures:

2.1 Procedure A for the synthesis of substrates 1a-g:

To a solution of **A** (2.0 mmol) in anhydrous THF (10 mL) at -78 °C was added *n*-butyllithium (1.5 mL, 2.4 mmol, 1.2 equiv) dropwise slowly. After finishing the addition, the reaction mixture was stirred at the same temperature for 30 min. Then, a solution of **B** (2.4 mmol, 1.2 equiv) in anhydrous THF (3.0 mL) was dropwise added. The reaction mixture was stirred at -78 °C for 2 h and saturated NH₄Cl solution was added to quench the reaction. Then the resulting solution was extracted with EtOAc (3×20 mL). The combined organic phases were dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure to yield **1-int**, which were directly used in the next step without further purification.

To a solution of **1-int** (1.0 mmol) and triethylsilane (174 mg, 1.5 mmol, 1.5 equiv) in CH₂Cl₂ (10 mL) at 0 °C under nitrogen was slowly added boron trifluoride etherate (284 mg, 2.0 mmol, 2.0 equiv). The reaction mixture was stirred at room temperature overnight, and then the reaction was quenched with saturated aqueous NaHCO₃ and stirred for 30 minutes. The resulting solution was extracted with CH₂Cl₂ (3 × 20 mL). Then the combined organic phases were washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed to give the crude product which was purified by silica gel flash chromatography (PE/EtOAc = 10/1 to 5/1, v/v) to give substrates **2-int**.

To a solution of **2-int** (1.0 mmol) in CH₂Cl₂ (10 mL) at 30 °C was added MnO₂ (435 mg, 5.0 mmol, 5.0 equiv). The reaction mixture was stirred at 30 °C overnight, and the filtrate is obtained by suction filtration. The solvent was removed to give the crude product which was purified by silica gel flash chromatography (CH₂Cl₂) to give substrates **1a-g**.

1f 1g

2.2 Procedure B for the synthesis of products 3a-j:

A 10 mL glass tube equipped with a stirring bar was charged with 1 (0.11 mmol, 1.1 equiv), 2 (0.1 mmol, 1.0 equiv), Cs_2CO_3 (0.15 mmol, 1.5 equiv) and CH_3CN (1.5 mL). The mixture was stirred at 50 °C for 1.5 h. After completion, the mixture was filtered and the filtrate was evaporated under vacuum. The crude product was purified by silica gel flash chromatograph (PE/EtOAc = 30/1 to 20/1, v/v) to give products **3a-j**.

2.3 Procedure C for the synthesis of products 4a-t:

A 10 mL glass tube equipped with a stirring bar was charged with 1 (0.11 mmol, 1.1 equiv), 2 (0.1 mmol, 1.0 equiv), Cs_2CO_3 (0.15 mmol, 1.5 equiv) and CH_3CN (1.5 mL). The mixture was stirred at 50 °C for 1.5 h. Then DDQ (34 mg, 0.15 mmol, 1.5 equiv) was added and the reaction mixture was stirred for another 6 h. After completion, the mixture was filtered and the filtrate was evaporated under vacuum. The crude product was purified by silica gel flash chromatograph (PE/EtOAc = 30/1 to 25/1, v/v) to give products 4a-t.

2.4 Procedure D for the synthesis of products 6a-m:

A 10 mL glass tube equipped with a stirring bar was charged with 1 (0.1 mmol, 1.0 equiv), 5 (0.12 mmol, 1.2 equiv), Cs_2CO_3 (0.22 mmol, 2.2 equiv) and CH_3CN (1.5 mL). The mixture was stirred at 50 °C for 1.5 h. Then DDQ (34 mg, 0.15 mmol, 1.5 equiv) was added and the reaction mixture was stirred for another 6 h. After completion, the mixture was filtered and the filtrate was evaporated under vacuum. The crude product was purified by silica gel flash chromatograph (PE/EtOAc = 30/1 to 25/1, v/v) to give products **6a-m**.

2.5 Procedure E for the synthesis of product 7:

A 10 mL glass tube equipped with a stirring bar was charged with **6a** (0.1 mmol, 1.0 equiv), AlCl₃ (1 mmol, 10.0 equiv) and toluene (3 mL). The mixture was stirred at 60 °C for 4 h. After completion, the mixture was filtered and the filtrate was evaporated under vacuum. The crude product was purified by silica gel flash chromatograph (PE/EtOAc = 50/1 to 5/1, v/v) to give products **7** as a brown solid (36 mg, 78% yield)

3. Characterization data for 3a-j:

(3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-tosylindolin-2-yl)(phenyl)methanone (3a)

According to general procedure B, **3a** was obtained as a white solid (53 mg, 92% yield). Melting Point: 183-185 °C

¹**H NMR (500 MHz, CDCl₃)** δ 7.86 (d, J = 8.3 Hz, 4H), 7.60-7.62 (m, 2H), 7.44 (t, J = 5.6 Hz, 2H), 7.29 (d, J = 8.3 Hz, 3H), 7.00 (t, J = 7.4 Hz, 1H), 6.92 (t, J = 5.7 Hz, 1H), 6.56 (s, 2H), 5.44 (d, J = 6.4 Hz, 1H), 5.16 (s, 1H), 4.35 (d, J = 6.4 Hz, 1H), 2.43 (s, 3H), 1.27 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 195.6, 153.2, 144.3, 142.0, 136.2 (2C), 135.4, 134.8, 134.7, 133.5, 132.5, 132.3, 129.8 (2C), 129.2 (2C), 128.6 (2C), 127.7 (2C), 126.0, 124.6 (2C), 123.8, 113.9, 74.1, 52.1, 34.2 (2C), 30.1 (6C), 21.6 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₆H₄₀NO₄S 582.2678; found 582.2677.

(3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-tosylindolin-2-yl)(p-tolyl)methanone (3b) According to general procedure B, **3b** was obtained as a white solid (54 mg, 90% yield). Melting Point: 193-195 °C

¹**H** NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 8.3 Hz, 2H), 7.74 (d, J = 8.2 Hz, 2H), 7.60 (d, J = 8.2 Hz, 1H), 7.29 (d, J = 8.3 Hz, 2H), 7.23 (d, J = 8.1 Hz, 2H), 6.97-7.02 (m, 1H), 6.98 (d, J = 7.5 Hz, 1H), 6.92 (t, J = 8.1 Hz, 1H), 6.55 (s, 2H), 5.41 (d, J = 6.5 Hz, 1H), 5.16 (s, 1H), 4.33 (d, J = 6.4 Hz, 1H), 2.43 (s, 3H), 2.24 (s, 3H), 1.27 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 195.3, 153.2, 144.4, 142.0, 136.1 (2C), 135.0, 132.4, 132.3, 132.2, 129.8 (2C), 129.3 (2C), 128.6, 128.2 (2C), 127.8 (2C), 127.5, 126.0, 124.7 (2C), 123.8, 113.9, 74.0, 52.2, 34.2 (2C), 30.1 (6C), 21.7, 21.6 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₇H₄₂NO₄S 596.2835; found 596.2823.

(4-chlorophenyl)(3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-tosylindolin-2-yl)methanone (3c) According to general procedure B, 3c was obtained as a white solid (54 mg, 88% yield). Melting Point: 179-181 °C

¹**H** NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 8.2 Hz, 2H), 7.77 (d, J = 8.6 Hz, 2H), 7.63 (d, J = 8.2 Hz, 1H), 7.40 (d, J = 8.6 Hz, 1H), 7.29-7.31 (m, 3H), 7.19 (d, J = 8.5 Hz, 1H), 7.01 (t, J = 7.5 Hz, 1H), 6.92 (d, J = 7.7

Hz, 1H), 6.54 (s, 2H), 5.30 (d, *J* = 7.0 Hz, 1H), 5.18 (s, 1H), 4.34 (d, *J* = 6.9 Hz, 1H), 2.43 (s, 3H), 1.27 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 194.7, 153.3, 144.5, 141.8, 140.1, 136.3 (2C), 132.2, 130.5 (2C), 129.9 (2C), 129.5, 128.9 (2C), 128.7, 128.2, 127.8 (2C), 127.4, 126.0, 124.6 (2C), 124.0, 114.0, 74.3, 52.2, 34.2 (2C), 30.1 (6C), 21.6 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₆H₃₉ClNO₄S 616.2288; found 616.2297.

(3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-tosylindolin-2-yl)(4-fluorophenyl)methanone (3d) According to general procedure B, 3d was obtained as a white solid (48 mg, 80% yield). Melting Point: 170-172 °C

¹**H** NMR (500 MHz, CDCl₃) δ 7.87-7.89 (m, 2H), 7.82-7.85 (m, 2H), 7.62 (d, J = 8.2 Hz, 1H), 7.30 (d, J = 7.8 Hz, 3H), 7.09-7.13 (m, 2H), 7.01 (t, J = 7.2 Hz, 1H), 6.92 (d, J = 7.6 Hz, 1H), 6.54 (s, 2H), 5.34 (d, J = 6.8 Hz, 1H), 5.18 (s, 1H), 4.34 (d, J = 6.8 Hz, 1H), 2.43 (s, 3H), 1.27 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 194.2, 164.9, 153.3, 144.4, 141.8, 136.3 (2C), 134.7, 132.3, 132.1, 131.9, 131.8, 129.8 (2C), 128.7, 127.7 (2C), 127.4, 125.9, 124.6 (2C), 123.9, 115.8, 115.7, 113.9, 74.2, 52.2, 34.2 (2C), 30.1 (6C), 21.6 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₆H₃₉FNO₄S 600.2584; found 600.2568.

(3-(3,5-di-*tert***-butyl-4-hydroxyphenyl)-5-methyl-1-tosylindolin-2-yl)(phenyl)methanone (3e)** According to general procedure B, **3e** was obtained as a white solid (45 mg, 75% yield). Melting Point: 180-182 °C

¹**H** NMR (500 MHz, CDCl₃) δ 7.84 (d, J = 8.4 Hz, 2H), 7.83 (d, J = 3.0 Hz, 2H), 7.60 (t, J = 7.3 Hz, 1H), 7.50 (d, J = 8.3 Hz, 1H), 7.43 (t, J = 7.8 Hz, 2H), 7.31 (d, J = 7.9 Hz, 2H), 7.09 (d, J = 8.0 Hz, 1H), 6.73 (s, 1H), 6.55 (s, 2H), 5.36 (d, J = 6.6 Hz, 1H), 5.17 (s, 1H), 4.31 (d, J = 6.5 Hz, 1H), 2.43 (s, 3H), 2.24 (s, 3H), 1.27 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 195.7, 153.2, 144.2, 139.7, 136.2 (2C), 134.9, 134.7, 133.6, 133.5, 132.4, 132.3, 129.8 (2C), 129.2 (2C), 128.6 (2C), 127.8 (2C), 127.5, 126.4, 124.7 (2C), 113.7, 74.4, 52.2, 34.2 (2C), 30.1 (6C), 21.6, 20.8 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₇H₄₂NO₄S 596.2835; found 596.2844.

(5-chloro-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-1-tosylindolin-2-yl)(phenyl)methanone (3f)

According to general procedure B, 3f was obtained as a white solid (50 mg, 82% yield). Melting Point: 179-181 °C

¹**H NMR (500 MHz, CDCl₃)** δ 7.81-7.84 (m, 4H), 7.62 (t, J = 7.4 Hz, 1H), 7.54 (d, J = 8.7 Hz, 1H), 7.44 (t, J = 7.8 Hz, 2H), 7.32 (d, J = 8.1 Hz, 2H), 7.25 (dd, J_1 = 8.7 Hz, J_2 = 1.8 Hz, 1H), 6.89 (s, 1H), 6.54 (s, 2H), 5.47 (d, J = 6.4 Hz, 1H), 5.20 (s, 1H), 4.29 (d, J = 6.8 Hz, 1H), 2.44 (s, 3H), 1.28 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 195.1, 153.5, 144.6, 140.7, 136.4 (2C), 134.7, 134.4, 134.4, 133.7, 131.5, 129.9 (2C), 129.2 (2C), 128.7, 128.6 (2C), 127.7, 127.4 (2C), 126.0, 124.5 (2C), 115.3, 74.2, 51.8, 34.2 (2C), 30.1 (6C), 21.6 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₆H₃₉ClNO₄S 616.2288; found 616.2281.

(5-bromo-3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-tosylindolin-2-yl)(phenyl)methanone (3g) According to general procedure B, 3g was obtained as a white solid (58 mg, 88% yield). Melting Point: 168-170 °C

¹**H NMR (500 MHz, CDCl₃)** δ 7.81-7.84 (m, 4H), 7.62 (t, J = 7.3 Hz, 1H), 7.49 (d, J = 8.8 Hz, 1H), 7.44 (t, J = 7.7 Hz, 2H), 7.39 (d, J = 7.9 Hz, 1H), 7.32 (d, J = 7.9 Hz, 2H), 7.04 (s, 1H), 6.55 (s, 2H), 5.46 (d, J = 6.3 Hz, 1H), 5.21 (s, 1H), 4.30 (d, J = 6.2 Hz, 1H), 2.44 (s, 3H), 1.28 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 195.0, 153.5, 144.6, 141.2, 136.5 (2C), 134.8, 134.7, 134.4, 133.7, 131.6, 131.5, 129.9 (2C), 129.1 (2C), 128.9, 128.7 (2C), 127.6 (2C), 124.5 (2C), 116.4, 115.3, 74.2, 51.8, 34.2 (2C), 30.1 (6C), 21.6 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₆H₃₉BrNO₄S 660.1783; found 660.1772.

(3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-6-methyl-1-tosylindolin-2-yl)(phenyl)methanone (3h) According to general procedure B, **3h** was obtained as a white solid (46 mg, 78% yield). Melting Point: 193-195 °C

¹**H NMR (500 MHz, CDCl₃)** δ 7.83-7.86 (m, 4H), 7.60 (t, J = 7.4 Hz, 1H), 7.45 (s, 1H), 7.43 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 1H), 7.21 (t, J = 7.7 Hz, 1H), 6.80 (m, 2H), 6.55 (s, 2H), 5.39 (d, J = 6.4 Hz, 1H), 5.15 (s, 1H), 4.30 (d, J = 6.4 Hz, 1H), 2.43 (s, 3H), 2.41 (s, 3H), 1.27 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 195.6, 153.2, 144.2, 142.0, 138.7, 136.1 (2C), 135.3, 135.0, 134.7, 133.5, 132.4, 129.8 (2C), 129.2 (2C), 128.6 (2C), 127.7 (2C), 126.6, 125.6, 124.6 (2C), 114.5, 74.5, 51.8, 34.2 (2C), 30.1 (6C), 21.8, 21.6 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₇H₄₂NO₄S 596.2835; found 596.2823.

(3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-6-fluoro-1-tosylindolin-2-yl)(phenyl)methanone (3i) According to general procedure B, **3i** was obtained as a white solid (47 mg, 78% yield). Melting Point: 181-183 °C

¹**H NMR (500 MHz, CDCl₃)** δ 7.84-7.87 (m, 4H), 7.63 (t, *J* = 7.5 Hz, 1H), 7.45 (d, *J* = 7.6 Hz, 2H), 7.32-7.37 (m, 3H), 6.85 (dd, *J*₁ = 8.2 Hz, *J*₂ = 5.4 Hz, 1H), 6.68 (td, *J*₁ = 8.7 Hz, *J*₂ = 2.1 Hz, 1H), 6.54 (s, 2H), 5.49 (d, *J* = 6.1 Hz, 1H), 5.18 (s, 1H), 4.29 (d, *J* = 6.0 Hz, 1H), 2.45 (s, 3H), 1.26 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 195.1, 164.2, 153.3, 144.6, 136.3 (2C), 134.8, 134.4, 133.7, 132.1, 129.9 (2C), 129.2 (2C), 128.7 (2C), 128.1, 127.9, 127.7 (2C), 127.4, 124.5 (2C), 110.7, 101.9, 74.7, 51.4, 34.2 (2C), 30.0 (6C), 21.6 ppm.e

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₆H₃₉FNO₄S 600.2584; found 600.2598.

1-(3-(3,5-di-*tert***-butyl-4-hydroxyphenyl)-1-tosylindolin-2-yl)propan-1-one (3j)** According to general procedure B, **3h** was obtained as a white solid (37 mg, 70% yield). Melting Point: 115-117 °C

¹**H NMR (500 MHz, CDCl₃)** δ 7.78 (d, J = 8.2 Hz, 1H), 7.66 (d, J = 8.2 Hz, 1H), 7.31 (t, J = 7.7 Hz, 1H), 7.18 (d, J = 8.2 Hz, 2H), 7.04 (t, J = 7.5 Hz, 1H), 6.93 (d, J = 7.5 Hz, 2H), 6.52 (s, 2H), 5.11 (s, 1H), 4.43 (d, J = 6.5 Hz, 1H), 4.27 (d, J = 6.4 Hz, 1H), 2.36 (s, 3H), 1.28 (s, 18H), 1.16 (d, J = 7.2 Hz, 3H), 0.91 (d, J = 6.7 Hz, 2H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 209.2, 153.0, 144.4, 141.6, 136.0 (2C), 133.6, 132.6, 132.3, 129.7 (2C), 128.6, 127.7 (2C), 126.3, 124.3 (2C), 124.3, 114.7, 77.4, 51.0, 34.2 (2C), 31.9, 30.1 (6C), 21.6, 7.4 ppm. HRMS (ESI): m/z [M+H]⁺ calcd for C₃₂H₄₀NO₄S 534.2678; found 534.2669.

4. Characterization data for 4a-t:

(3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-tosyl-1*H*-indol-2-yl)(phenyl)methanone (4a) According to general procedure C, 4a was obtained as a brown solid (42 mg, 83% yield). Melting Point: 181-183 °C

¹**H NMR (500 MHz, CDCl₃)** δ 8.18 (d, J = 8.4 Hz, 1H), 7.95 (d, J = 8.4 Hz, 2H), 7.89 (d, J = 7.2 Hz, 2H), 7.66 (d, J = 7.9 Hz, 1H), 7.46-7.51 (m, 2H), 7.33-7.39 (m, 4H), 7.29 (d, J = 8.3 Hz, 1H), 7.14 (s, 2H), 5.18 (s, 1H), 2.39 (s, 3H), 1.33 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 189.8, 153.6, 145.0, 138.0, 136.3, 135.8, 134.8 (2C), 133.2, 132.2, 129.8 (2C), 129.7 (2C), 129.6, 128.3 (2C), 127.8, 127.6 (2C), 126.3 (2C), 126.2, 124.2, 122.0, 121.5, 115.0, 34.3 (2C), 30.1 (6C), 21.7 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₆H₃₈NO₄S 580.2522; found 580.2512.

(3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-tosyl-1*H*-indol-2-yl)(p-tolyl)methanone (4b) According to general procedure C, 4b was obtained as a brown solid (51 mg, 86% yield). Melting Point: 180-182 °C

¹**H** NMR (500 MHz, CDCl₃) δ 8.17 (d, J = 8.4 Hz, 1H), 7.94 (d, J = 8.0 Hz, 2H), 7.78 (d, J = 8.0 Hz, 2H), 7.66 (d, J = 7.9 Hz, 1H), 7.46 (t, J = 7.7 Hz, 1H), 7.32-7.38 (m, 2H), 7.27-7.28 (m, 1H), 7.17 (d, J = 8.2 Hz, 2H), 7.15 (s, 2H), 5.18 (s, 1H), 2.38 (s, 3H), 2.37 (s, 3H), 1.33 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 189.5, 153.6, 145.0, 144.1, 136.2, 135.8 (2C), 135.7, 134.8, 132.4, 129.9 (2C), 129.8, 129.7 (2C), 129.0 (2C), 127.6 (2C), 127.4, 126.3 (2C), 126.1, 124.1, 122.1, 121.4, 115.0, 34.3 (2C), 30.1 (6C), 21.7, 21.6 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₇H₄₀NO₄S 594.2678; found 594.2658.

[1,1'-biphenyl]-4-yl(3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-tosyl-1*H*-indol-2-yl)methanone (4c) According to general procedure C, 4c was obtained as a brown solid (46 mg, 71% yield). Melting Point: 209-211 °C

¹**H NMR (500 MHz, CDCl₃)** δ 8.20 (d, J = 8.4 Hz, 1H), 7.96 (dd, J_1 = 8.2 Hz, J_2 = 3.0 Hz, 4H), 7.68 (d, J = 7.9 Hz, 1H), 7.58 (d, J = 8.4 Hz, 4H), 7.49 (d, J = 8.7 Hz, 1H), 7.46 (d, J = 7.9 Hz, 2H), 7.40 (d, J = 7.3 Hz, 1H), 7.35 (t, J = 7.5 Hz, 1H), 7.29 (d, J = 8.7 Hz, 2H), 7.18 (s, 2H), 5.18 (s, 1H), 2.40 (s, 3H), 1.33 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 189.4, 153.7, 145.9, 145.0, 140.1, 136.8, 136.3, 135.9 (2C), 134.8, 132.2, 130.3 (2C), 129.7 (2C), 129.6, 128.9 (2C), 128.1, 127.7, 127.6 (2C), 127.3 (2C), 127.1 (2C), 126.4 (2C), 126.3, 124.2, 122.0, 121.5, 115.0, 34.3 (2C), 30.1 (6C), 21.7 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₄₂H₄₂NO₄S 656.2835; found 656.2820.

(3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-tosyl-1*H*-indol-2-yl)(4-methoxyphenyl)methanone (4d)

According to general procedure C, **4d** was obtained as a white solid (50 mg, 82% yield). Melting Point: 192-194 °C

¹**H NMR (500 MHz, CDCl₃)** δ 8.17 (d, J = 8.4 Hz, 1H), 7.97 (d, J = 8.3 Hz, 2H), 7.86-7.88 (m, 2H), 7.66 (d, J = 7.9 Hz, 1H), 7.46 (t, J = 8.1 Hz, 1H), 7.37 (m, 1H), 7.33 (t, J = 7.6 Hz, 1H), 7.29-7.30 (m, 1H), 7.16 (s, 2H), 6.85(d, J = 8.9 Hz, 2H), 5.18 (s, 1H), 3.84 (s, 3H), 2.39 (s, 3H), 1.34 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 188.4, 163.7, 153.5, 144.9, 136.2, 135.8 (2C), 134.8, 132.1 (2C), 131.3, 129.7 (2C), 127.6 (2C), 127.0, 126.3 (2C), 126.0, 124.4, 124.1, 123.5, 121.3, 114.9, 113.6 (2C), 100.0, 55.5, 34.3 (2C), 30.1 (6C), 21.6 ppm.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{37}H_{40}NO_5S$ 610.2627; found 610.2615.

(3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-tosyl-1*H*-indol-2-yl)(4-fluorophenyl)methanone (4e) According to general procedure C, **4e** was obtained as a white solid (44 mg, 74% yield). Melting Point: 219-221 °C

¹**H NMR (500 MHz, CDCl₃)** δ 8.17 (d, J = 8.4 Hz, 1H), 7.95 (d, J = 8.3 Hz, 2H), 7.90-7.92 (m, 2H), 7.66 (d, J = 7.9 Hz, 1H), 7.48 (t, J = 7.9 Hz, 2H), 7.35 (t, J = 7.6 Hz, 2H), 7.29 (d, J = 8.5 Hz, 2H), 7.14 (s, 2H), 7.03(t, J = 8.6 Hz, 2H), 5.21 (s, 1H), 2.39 (s, 3H), 1.34 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 188.2, 166.8, 164.7, 153.7, 145.1, 136.3, 135.9 (2C), 134.7, 134.5, 132.4, 131.8, 129.6 (2C), 128.0, 127.6 (2C), 126.4 (2C), 124.3 (2C), 121.9, 121.5 (2C), 115.6, 115.4, 115.0, 34.3 (2C), 30.1 (6C), 21.7 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₆H₃₇FNO₄S 598.2427; found 598.2421.

(4-chlorophenyl)(3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-tosyl-1*H*-indol-2-yl)methanone (4f) According to general procedure C, 4f was obtained as a orange solid (50 mg, 82% yield). Melting Point: 160-162 °C

¹**H** NMR (500 MHz, CDCl₃) δ 8.17 (d, J = 8.5 Hz, 1H), 7.93 (d, J = 8.3 Hz, 2H), 7.81 (d, J = 8.5 Hz, 2H), 7.65 (d, J = 7.9 Hz, 1H), 7.49 (t, J = 7.9 Hz, 1H), 7.33-7.36 (m, 3H), 7.29 (d, J = 8.3 Hz, 2H), 7.14 (s, 2H), 5.22 (s, 1H), 2.39 (s, 3H), 1.35 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 188.5, 153.8, 145.1, 139.6, 136.5, 136.3, 135.9 (2C), 134.6, 131.7, 131.0 (2C), 129.7 (2C), 129.6, 128.6 (2C), 128.3, 127.6 (2C), 126.5, 126.4 (2C), 124.3, 121.8, 121.6, 115.0, 34.3 (2C), 30.1 (6C), 21.7 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₆H₃₇ClNO₄S 614.2132; found 614.2122.

(4-bromophenyl)(3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-tosyl-1*H*-indol-2-yl)methanone (4g) According to general procedure C, 4g was obtained as a brown solid (54 mg, 82% yield). Melting Point: 160-162 °C

¹**H** NMR (500 MHz, CDCl₃) δ 8.17 (d, J = 8.4 Hz, 1H), 7.92 (d, J = 8.4 Hz, 2H), 7.73 (d, J = 8.5 Hz, 2H), 7.65 (d, J = 7.9 Hz, 1H), 7.47-7.51 (m, 3H), 7.33-7.37 (m, 1H), 7.29 (d, J = 8.3 Hz, 2H), 7.13 (s, 2H), 5.23 (s, 1H), 2.40 (s, 3H), 1.35 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 188.7, 153.8, 145.1, 136.9, 136.4, 136.0 (2C), 134.6, 131.9 (2C), 131.6, 131.4, 131.1 (2C), 129.7 (2C), 129.6, 128.4, 127.6 (2C), 126.5, 126.4 (2C), 124.3, 121.8, 121.6, 115.0, 34.3 (2C), 30.1 (6C), 21.7 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₆H₃₇BrNO₄S 658.1627; found 658.1615.

(3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-tosyl-1*H*-indol-2-yl)(4-nitrophenyl)methanone (4h) According to general procedure C, 4h was obtained as a yellow solid (40 mg, 64% yield). Melting Point: 207-209 °C

¹**H** NMR (500 MHz, CDCl₃) δ 8.20 (d, J = 8.6 Hz, 2H), 8.18 (d, J = 8.9 Hz, 1H), 8.01 (d, J = 8.6 Hz, 2H), 7.90 (d, J = 8.1 Hz, 2H), 7.66 (d, J = 7.9 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.37 (t, J = 7.6 Hz, 1H), 7.30 (d, J = 8.2 Hz, 1H), 7.16 (s, 2H), 5.26 (s, 1H), 2.40 (s, 3H), 1.36 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 187.7, 154.1, 150.0, 145.4, 142.7, 136.6, 136.1 (2C), 134.3, 131.2, 130.5 (2C), 130.1, 129.8 (2C), 129.6, 127.5 (2C), 127.1, 126.6 (2C), 124.6, 123.5 (2C), 121.9, 121.4, 115.2, 34.3 (2C), 30.1 (6C), 21.7 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₆H₃₇N₂O₆S 625.2372; found 625.2368.

(3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-tosyl-1*H*-indol-2-yl)(3-fluorophenyl)methanone (4i) According to general procedure C, 4i was obtained as a red solid (52 mg, 87% yield). Melting Point: 169-171 °C

¹**H** NMR (500 MHz, CDCl₃) δ 8.18 (d, J = 8.4 Hz, 1H), 7.95 (d, J = 8.4 Hz, 2H), 7.65 (t, J = 7.1 Hz, 2H), 7.53-7.57 (m, 1H), 7.48-7.51(m, 1H), 7.32-7.37 (m, 2H), 7.30 (d, J = 8.3 Hz, 1H), 7.18 (td, J_1 = 8.2 Hz, J_2 = 2.5 Hz, 1H), 7.13 (s, 2H), 5.21 (s, 1H), 2.40 (s, 3H), 1.34 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 188.4, 175.2, 163.6, 153.8, 145.2, 140.0, 136.4, 136.0 (2C), 134.7, 131.6, 129.9, 129.7 (2C), 129.5, 128.6, 127.6 (2C), 126.6, 126.4 (2C), 125.6, 124.3, 121.7, 120.1, 116.2, 115.0, 34.3 (2C), 30.1 (6C), 21.7 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₆H₃₇FNO₄S 598.2427; found 598.2418.

(3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-tosyl-1*H*-indol-2-yl)(2,5-dimethoxyphenyl)methanone (4j) According to general procedure C, 4j was obtained as a brown solid (53 mg, 83% yield). Melting Point: 165-167 °C

¹**H** NMR (500 MHz, CDCl₃) δ 8.17 (d, J = 8.4 Hz, 1H), 7.92 (d, J = 8.3 Hz, 2H), 7.73 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 8.1 Hz, 1H), 7.47-7.51 (m, 3H), 7.35 (t, J = 7.5 Hz, 1H), 7.29 (s, 1H), 7.13 (s, 2H), 5.23 (s, 1H), 2.40 (s, 3H), 1.76 (s, 6H), 1.35 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 187.5, 154.2, 153.4, 153.1, 144.7, 135.9, 135.6 (2C), 135.4, 135.3, 130.0, 129.6 (2C), 128.1, 127.7 (2C), 126.3 (2C), 125.8, 125.5, 123.7, 122.4, 121.6, 121.3, 114.6, 114.5, 113.7, 56.5, 55.8, 34.2 (2C), 30.1 (6C), 21.6 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₈H₄₂NO₆S 640.2733; found 640.2716.

3-(3,5-di-*tert***-butyl-4-hydroxyphenyl)-1-tosyl-1***H***-indol-2-yl)(3,4-dimethoxyphenyl)methanone (4k)** According to general procedure B\C, **4k** was obtained as a brown solid (53 mg, 83% yield). Melting Point: 184-186 °C

¹**H** NMR (500 MHz, CDCl₃) δ 8.18 (d, J = 8.4 Hz, 1H), 8.00 (d, J = 8.2 Hz, 2H), 7.68 (d, J = 7.9 Hz, 1H), 7.53 (s, 1H), 7.44-7.49 (m, 2H), 7.34 (t, J = 7.6 Hz, 1H), 7.30 (d, J = 8.2 Hz, 2H), 7.16 (s, 2H), 6.76 (d, J = 8.5 Hz, 1H), 5.19 (s, 1H), 3.91 (s, 3H), 3.88 (s, 3H), 2.40 (s, 3H), 1.34 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 188.4, 153.6, 153.5, 148.8, 145.0, 136.3, 135.8 (2C), 135.0, 132.2, 131.1, 129.7 (2C), 129.5, 127.7 (2C), 127.0, 126.3 (2C), 126.1, 125.7, 124.1, 122.3, 121.4, 114.9, 111.0, 110.0, 56.1, 56.0, 34.3 (2C), 30.1 (6C), 21.7 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₈H₄₂NO₆S 640.2773; found 640.2718.

(3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-tosyl-1*H*-indol-2-yl)(3,4-dichlorophenyl)methanone (4l) According to general procedure C, 4l was obtained as a red solid (56 mg, 91% yield).

Melting Point: 192-194 °C

¹**H NMR (500 MHz, CDCl₃)** δ 8.15 (d, J = 8.4 Hz, 1H), 7.98 (d, J = 8.3 Hz, 2H), 7.73-7.80 (m, 1H), 7.59 (d, J = 7.9 Hz, 1H), 7.48 (t, J = 7.6 Hz, 1H), 7.28-7.34 (m, 3H), 7.15 (s, 2H), 6.83 (td, J_1 = 7.5 Hz, J_2 = 2.0 Hz, 1H), 6.72(td, J_1 = 8.6 Hz, J_2 = 2.1 Hz, 1H), 5.25(s, 1H), 2.40 (s, 3H), 1.38 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 184.6, 166.7, 164.6, 163.3, 161.2, 153.8, 145.1, 136.5, 135.8 (2C), 134.9, 133.5, 133.3, 129.7 (2C), 129.6, 128.9, 127.6 (2C), 126.8, 126.5 (2C), 124.2, 121.7, 115.0, 111.4, 104.7, 34.3 (2C), 30.1 (6C), 21.7 ppm.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{36}H_{36}F_2NO_4S$ 616.2333; found 616.2324.

(3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-tosyl-1*H*-indol-2-yl)(3,4-dichlorophenyl)methanone (4m) According to general procedure C, 4m was obtained as a brown solid (57 mg, 88% yield). Melting Point: 121-123 °C

¹**H NMR (500 MHz, CDCl₃)** δ 8.19 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 8.3 Hz, 2H), 7.88 (d, J = 1.9 Hz, 1H), 7.65-7.70 (m, 2H), 7.51 (t, J = 8.2 Hz, 1H), 7.42 (d, J = 8.4 Hz, 1H), 7.37 (t, J = 7.8 Hz, 1H), 7.33 (s, 1H), 7.30 (d, J = 13.5 Hz, 1H), 7.12 (s, 2H), 5.25 (s, 1H), 2.41 (s, 3H), 1.36 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 187.3, 153.9, 145.3, 137.6, 137.5, 136.6, 136.1 (2C), 134.8, 132.8, 131.6, 131.2, 130.3, 129.7 (2C), 129.4, 129.2, 128.6, 127.6 (2C), 126.9, 126.4 (2C), 124.4, 121.7, 121.6, 115.1, 34.3 (2C), 30.1 (6C), 21.7 ppm.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{36}H_{36}Cl_2NO_4S$ 648.1742; found 648.1738.

(3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-tosyl-1*H*-indol-2-yl)(naphthalen-2-yl)methanone (4n) According to general procedure C, 4n was obtained as a red solid (55 mg, 87% yield). Melting Point: 123-125 °C

¹**H NMR (500 MHz, CDCl₃)** δ 8.24 (m, 2H), 8.05 (dd, J_1 = 8.6 Hz, J_2 = 1.3Hz, 1H), 8.00 (d, J = 8.3 Hz, 2H), 7.83 (d, J = 7.6 Hz, 2H), 7.78 (d, J = 8.2 Hz, 1H), 7.71 (d, J = 7.9 Hz, 1H), 7.46-7.58 (m, 4H), 7.33-7.37 (t, J = 7.5 Hz, 1H), 7.29 (s, 1H), 7.17(s, 2H), 5.01 (s, 1H), 2.39 (s, 3H), 1.25 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 189.7, 153.5, 145.0, 136.4, 135.8 (2C), 135.7, 135.3, 135.1, 132.7 (2C), 132.4, 129.7 (2C), 129.6, 129.5, 128.5, 128.2, 127.9, 127.6 (2C), 126.5, 126.4 (2C), 126.3 (2C), 124.5, 124.2, 122.1, 121.5, 115.0, 34.2 (2C), 30.0 (6C), 21.7 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₄₀H₄₀NO₄S 630.2678; found 630.2659.

(3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-tosyl-1*H*-indol-2-yl)(pyridin-4-yl)methanone (40) According to general procedure C, 40 was obtained as a yellow solid (52 mg, 89% yield). Melting Point: 143-145 °C

¹**H NMR (500 MHz, CDCl₃)** δ 9.02 (d, J = 1.6 Hz, 1H), 8.68 (dd, J_1 = 4.7 Hz, J_2 = 1.4 Hz, 1H), 8.19 (d, J = 8.4 Hz, 2H), 8.12 (dt, J_1 = 8.0 Hz, J_2 = 1.9 Hz, 1H), 7.94 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 7.9 Hz, 1H), 7.51 (t, J = 7.5 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.30 (d, J = 8.2 Hz, 3H), 7.16 (s, 2H), 5.26 (s, 1H), 2.40 (s, 3H), 1.36 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 188.1, 154.0, 152.9, 150.7, 145.3, 136.9, 136.7, 136.1 (2C), 134.5, 133.6, 131.2, 129.7 (2C), 129.6, 129.5, 127.6 (2C), 126.9, 126.6 (2C), 124.5, 123.3, 121.8, 121.5, 115.2, 34.3 (2C), 30.1 (6C), 21.7 ppm.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{35}H_{37}N_2O_4S$ 581.2474; found 581.2476.

1-(3-(3,5-di*-tert***-butyl-4-hydroxyphenyl)-1-tosyl-1***H***-indol-2-yl)propan-1-one (4p)** According to general procedure C, **4p** was obtained as a white solid (32 mg, 61% yield).

Melting Point: 171-173 °C

¹**H** NMR (500 MHz, CDCl₃) δ 8.11 (d, J = 8.4 Hz, 1H), 7.88 (d, J = 8.2 Hz, 2H), 7.56 (d, J = 7.9 Hz, 1H), 7.43 (d, J = 7.6 Hz, 1H), 7.27-7.31 (m, 4H), 7.25 (s, 1H), 5.32 (s, 1H), 2.82 (q, J = 7.1 Hz, 2H), 2.37 (s, 3H), 1.49 (s, 18H), 1.16 (t, J = 7.1 Hz, 3H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 199.9, 154.0, 145.0, 136.2, 136.0 (2C), 134.3, 134.2, 130.0, 129.6 (2C), 127.5 (2C), 126.6, 126.5 (2C), 126.3, 124.2, 121.9, 121.4, 115.1, 38.3, 34.5 (2C), 30.3 (6C), 21.6, 8.1 ppm. HRMS (ESI): m/z [M+H]⁺ calcd for C₃₂H₃₇NO₄S 532.2522; found 532.2523.

(3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-5-methyl-1-tosyl-1*H*-indol-2-yl)(phenyl)methanone (4q) According to general procedure C, 4q was obtained as a red solid (17 mg, 30% yield). Melting Point: 191-193 °C

¹**H** NMR (500 MHz, CDCl₃) δ 8.11 (d, J = 8.4 Hz, 1H), 7.88 (d, J = 8.4 Hz, 2H), 7.58 (d, J = 7.7 Hz, 1H), 7.37-7.41 (m, 1H), 7.31 (s, 2H), 7.27-7.29 (m, 1H), 7.22 (d, J = 8.2 Hz, 2H), 5.31 (s, 1H), 2.34 (s, 3H), 1.48 (s, 18H), 1.03 (s, 9H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 207.6, 153.9, 144.9, 136.0 (2C), 135.1, 133.8, 132.7, 130.2, 129.6 (2C), 127.6 (2C), 126.8 (2C), 125.6, 124.6, 124.1, 122.4, 120.9, 114.6, 46.1, 34.4 (2C), 30.3 (6C), 27.0 (3C), 21.6 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₄H₄₂NO₄S 560.2835; 4found 560.2824.

(3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-5-fluoro-1-tosyl-1*H*-indol-2- yl)(phenyl)methanone (4r) According to general procedure C, 4r was obtained as a white solid (42 mg, 71% yield). Melting Point: 187-189 °C

¹**H NMR (500 MHz, CDCl₃)** δ 8.27 (q, J = 4.3 Hz, 1H), 7.92 (d, J = 8.2 Hz, 2H), 7.89 (d, J = 7.7 Hz, 2H), 7.51 (t, J = 7.3 Hz, 1H), 7.39 (t, J = 7.6 Hz, 2H), 7.29-7.31 (m, 3H), 7.19 (td, J_1 = 8.9 Hz, J_2 = 2.4 Hz, 1H), 7.10 (s, 2H), 5.21 (s, 1H), 2.40 (s, 3H), 1.32 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 189.5, 159.1, 153.8, 145.3, 137.8, 136.0 (2C), 134.4, 133.6, 133.4, 132.4, 130.9, 129.7 (2C), 129.7 (2C), 128.4 (2C), 127.6 (2C), 127.4, 126.1 (2C), 121.5, 116.1, 114.3, 106.9, 34.3 (2C), 30.1 (6C), 21.7 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₆H₃₆FNO₄S 598.2427; found 598.2419.

(5-chloro-3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-tosyl-1*H*-indol-2-yl)(phenyl)methanone (4s) According to general procedure C, 4s was obtained as a white solid (47 mg, 77% yield). Melting Point: 195-197 °C

¹**H** NMR (500 MHz, CDCl₃) δ 8.10 (d, J = 8.9 Hz, 1H), 7.93 (d, J = 8.1 Hz, 2H), 7.87 (d, J = 7.9 Hz, 2H), 7.61 (s, 1H), 7.51 (t, J = 7.3 Hz, 1H), 7.42 (dd, J_1 = 8.9 Hz, J_2 = 1.1 Hz, 1H), 7.38 (t, J = 7.6 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 7.08 (s, 2H), 5.21 (s, 1H), 2.41 (s, 3H), 1.32 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 189.5, 153.8, 145.4, 137.7, 136.0 (2C), 134.5, 134.5, 133.4, 133.3, 131.0, 130.1, 129.8 (2C), 129.7 (2C), 128.4 (2C), 127.6 (2C), 126.9, 126.5, 126.2 (2C), 121.4, 121.1, 116.0, 34.3 (2C), 30.1 (6C), 21.7 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₆H₃₇ClNO₄S 614.2132; found 614.2120.

(3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-5-methyl-1-tosyl-1*H*-indol-2-yl)(phenyl)methanone (4t) According to general procedure B, 4t was obtained as a white solid (38 mg, 67% yield). Melting Point: 185-187 °C

¹**H NMR (500 MHz, CDCl₃)** δ 8.05 (d, J = 8.5 Hz, 1H), 7.91 (d, J = 8.3 Hz, 2H), 7.88 (d, J = 7.6 Hz, 2H), 7.49 (t, J = 7.5 Hz, 1H), 7.43 (s, 1H), 7.37 (t, J = 7.7 Hz, 2H), 7.26-7.30 (m, 3H), 7.14 (s, 2H), 5.18 (s, 1H), 2.44 (s, 3H), 2.38 (s, 3H), 1.33 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 189.8, 153.6, 144.9, 138.1, 135.8 (2C), 134.7, 134.5, 133.9, 133.1, 132.3, 129.9, 129.7 (2C), 129.6 (2C), 128.3 (2C), 128.0, 127.8, 127.6 (2C), 126.4 (2C), 122.1, 121.3, 114.7, 34.3 (2C), 30.1 (6C), 21.7, 21.4 ppm. HRMS (ESI): m/z [M+H]⁺ calcd for C₃₆H₃₇ClNO₄S 594.2678; found 594.2666.

5. Characterization data for 6a-m:

4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-phenyl-1-tosylquinolin-2(1*H*)-one (6a)

According to general procedure D, **6a** was obtained as a yellow solid (50 mg, 87% yield). Melting Point: 203-205 °C

¹**H NMR (500 MHz, CDCl₃)** δ 8.41 (d, J = 8.6 Hz, 1H), 8.16 (d, J = 8.3 Hz, 2H), 7.52-7.57 (m, 2H), 7.36 (d, J = 8.1 Hz, 2H), 7.25 (t, J = 7.7 Hz, 1H), 7.09-7.11 (m, 3H), 6.89-6.91 (m, 2H), 6.80 (s, 2H), 5.23 (s, 1H), 2.46 (s, 3H), 1.29 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 162.1, 153.4, 151.0, 150.0, 137.0, 136.8, 135.5 (2C), 134.8, 132.3, 130.5 (2C), 129.5 (2C), 128.9, 128.7 (2C), 127.4 (2C), 127.1 (2C), 126.8, 126.0, 124.4, 124.1, 123.5, 119.2, 34.2 (2C), 30.1 (6C), 21.7 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₆H₃₈NO₄S 580.2522; found 580.2508.

3-(4-chlorophenyl)-4-(3,5-di-*tert***-butyl-4-hydroxyphenyl)-1-tosylquinolin-2(1***H***)-one (6b) According to general procedure D, 6b was obtained as a white solid (32 mg, 53% yield). Melting Point: 168-170 °C**

¹**H NMR (500 MHz, CDCl₃)** δ 8.42 (d, J = 8.7 Hz, 1H), 8.15 (d, J = 8.3 Hz, 2H), 7.52-7.59 (m, 2H), 7.37 (d, J = 8.3 Hz, 2H), 7.25 (d, J = 7.5 Hz, 1H), 7.09 (d, J = 8.4 Hz, 2H), 6.84 (d, J = 8.4 Hz, 2H), 6.79 (s, 2H), 5.28 (s, 1H), 2.46 (s, 3H), 1.31 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 161.9, 153.7, 151.4, 145.1, 136.9, 135.7 (2C), 133.4, 132.9, 132.0 (2C), 131.0, 129.8, 129.5 (2C), 128.9, 128.7 (2C), 127.6 (2C), 127.1 (2C), 125.7, 124.2, 123.2, 119.2, 100.0, 34.2 (2C), 30.2 (6C), 21.7 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₆H₃₇ClNO₄S 614.2132; found 614.2117.

4-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-(4-fluorophenyl)-1-tosylquinolin-2(1H)-one (6c)

According to general procedure D, **6c** was obtained as a yellow solid (56 mg, 95% yield). Melting Point: 160-162 °C

¹**H** NMR (500 MHz, CDCl₃) δ 8.42 (d, J = 8.7 Hz, 1H), 8.16 (d, J = 8.3 Hz, 2H), 7.57 (t, J = 8.6 Hz, 1H), 7.52 (d, J = 8.0 Hz, 1H), 7.37 (d, J = 8.3 Hz, 2H), 7.25-7.29 (m, 2H), 6.87-6.89 (m, 2H), 6.83 (d, J = 8.7 Hz, 1H), 6.80 (s, 2H), 5.27 (s, 1H), 2.46 (s, 3H), 1.31 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 162.7, 162.1, 160.8, 153.6, 151.4, 145.1, 136.8, 135.7 (2C), 132.3 (2C), 131.2, 130.7, 129.7 (2C), 129.6 (2C), 128.9, 128.6 (2C), 127.0 (2C), 125.8, 124.2, 123.3, 119.2, 114.3, 34.2 (2C), 30.2 (6C), 21.7 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₆H₃₇FNO₄S 598.2427; found 598.2416.

4-(3,5-di-*tert***-butyl-4-hydroxyphenyl)-3-(4-methoxyphenyl)-1-tosylquinolin-2(1***H***)-one (6d) According to general procedure D, 6d was obtained as a white solid (30 mg, 49% yield). Melting Point: 171-173 °C**

¹**H NMR (500 MHz, CDCl₃)** δ 8.40 (d, J = 8.6 Hz, 1H), 8.16 (d, J = 8.3 Hz, 2H), 7.52-7.56 (m, 2H), 7.36 (d, J = 8.2 Hz, 2H), 7.29 (m, 1H), 7.25 (t, J = 7.9 Hz, 1H), 6.83-6.85 (m, 1H), 6.82 (s, 2H), 6.65(d, J = 8.7 Hz, 2H), 5.23 (s, 1H), 3.72 (s, 3H), 2.46 (s, 3H), 1.31 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 162.3, 158.5, 153.4, 150.7, 145.0, 137.0, 136.7, 135.5 (2C), 132.0, 131.7 (2C), 129.5 (2C), 129.3, 128.8, 128.7 (2C), 127.2 (2C), 127.1, 126.2, 124.1, 123.5, 119.1, 113.0 (2C), 55. 2, 34.2 (2C), 30.2 (6C), 21.7 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₇H₄₀NO₅S 610.2627; found 610.2618.

3-(3-chlorophenyl)-4-(3,5-di-*tert***-butyl-4-hydroxyphenyl)-1-tosylquinolin-2(1***H***)-one (6e) According to general procedure D, 6e was obtained as a white solid (56 mg, 91% yield). Melting Point: 170-172 °C**

¹**H** NMR (500 MHz, CDCl₃) δ 8.47 (d, J = 8.7 Hz, 1H), 8.09 (d, J = 8.3 Hz, 2H), 7.60 (t, J = 8.5 Hz, 1H), 7.54 (d, J = 8.0 Hz, 1H), 7.34 (d, J = 8.3 Hz, 2H), 7.29-7.30 (d, J = 8.0 Hz, 1H), 7.18 (d, J = 8.0 Hz, 1H), 7.05 (t, J = 7.9 Hz, 1H), 6.97 (t, J = 7.6 Hz, 1H), 6.89 (s, 1H), 6.85 (s, 1H), 6.78 (d, J = 7.6 Hz, 1H), 5.20 (s, 1H), 2.45 (s, 3H), 1.35 (s, 9H), 1.26 (s, 9H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 160.8, 153.6, 152.3, 145.1, 137.0, 136.6, 134.7, 134.6, 134.2, 132.1, 132.0 (2C), 130.9, 129.8, 129.4 (2C), 129.1 (2C), 128.8 (2C), 128.6, 126.0, 125.8, 124.2, 123.0, 119.5, 100.0, 34.2 (2C), 30.1 (6C), 21.7 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₆H₃₇ClNO₄S 614.2132; found 614.2121.

3-(4-(benzyloxy)phenyl)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-tosylquinolin-2(1*H*)-one (6f) According to general procedure D, 6f was obtained as a white solid (44 mg, 64% yield). Melting Point: 160-162 °C

¹**H NMR (500 MHz, CDCl₃)** δ 8.40 (d, J = 8.5 Hz, 1H), 8.16 (d, J = 8.4 Hz, 2H), 7.52-7.56 (m, 2H), 7.36-7.39 (m, 6H), 7.31-7.33 (m, 2H), 7.25 (t, J = 7.6 Hz, 1H), 6.83-6.85 (m, 1H), 6.81 (s, 2H), 6.72 (d, J = 8.7 Hz, 2H), 5.24 (s, 1H), 4.98 (s, 2H), 2.46 (s, 3H), 1.31 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 162.3, 157.8, 153.4, 150.7, 148.0, 145.0, 137.1, 136.7, 135.5 (2C), 131.9, 131.8 (2C), 129.5 (2C), 129.3, 128.8, 128.7 (2C), 128.5 (2C), 127.9, 127.4, 127.3 (2C), 127.2 (2C), 126.2, 124.1, 123.5, 119.1, 113.9 (2C), 69.9, 34.2 (2C), 30.2 (6C), 21.7 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₄₃H₄₄NO₅S 686.2940; found 686.2926.

4-(3,5-di-*tert***-butyl-4-hydroxyphenyl)-3-(2,5-dimethoxyphenyl)-1-tosylquinolin-2(1***H***)-one (6g) According to general procedure D, 6g was obtained as a white solid (48 mg, 75% yield). Melting Point: 123-125 °C**

¹**H** NMR (500 MHz, CDCl₃) δ 8.43 (d, J = 8.7 Hz, 1H), 8.10 (d, J = 8.2 Hz, 2H), 7.58 (t, J = 7.6 Hz, 1H), 7.53 (d, J = 7.9 Hz, 1H), 7.33 (d, J = 8.3 Hz, 2H), 7.28 (s, 1H), 6.75-6.85 (m, 4H), 6.57 (s, 1H), 5.19 (s, 1H), 2.44 (s, 3H), 2.10 (s, 3H), 1.73 (s, 3H), 1.29 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 161.7, 153.4, 151.3, 145.0, 136.8, 136.7, 135.2, 134.2, 134.1, 133.0, 132.8, 131.6 (2C), 129.5, 129.4, 129.3 (2C), 129.0 (2C), 128.7, 128.2, 128.1, 126.0, 124.1, 123.4, 119.5 (2C), 34.2 (2C), 31.6, 30.1 (3C), 22.7, 21.7, 20.7, 18.9, 14.1 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₈H₄₂NO₆S 640.2733; found 640.2725.

4-(3,5-di-*tert***-butyl-4-hydroxyphenyl)-7-methyl-3-phenyl-1-tosylquinolin-2(1***H***)-one (6h) According to general procedure D, 6h was obtained as a white solid (52 mg, 87% yield). Melting Point: 161-163 °C**

¹**H** NMR (500 MHz, CDCl₃) δ 8.24 (s, 1H), 8.12 (d, J = 8.2 Hz, 2H), 7.41 (d, J = 8.2 Hz, 1H), 7.35 (d, J = 8.3 Hz, 2H), 7.07-7.09 (m, 4H), 6.86-6.88 (m, 2H), 6.79 (s, 2H), 5.21 (s, 1H), 2.55 (s, 3H), 2.45 (s, 3H), 1.28 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 162.3, 153.4, 151.1, 144.9, 140.2, 137.2, 136.9, 135.4 (2C), 134.9, 131.2, 130.6 (2C), 129.5 (2C), 128.7, 128.6 (2C), 127.3 (2C), 127.2 (2C), 126.7, 126.1, 125.3, 121.1, 119.6, 34.2 (2C), 30.1 (6C), 22.1, 21.7 ppm.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{37}H_{40}NO_4S$ 594.2678; found 594.2665.

4-(3,5-di-*tert***-butyl-4-hydroxyphenyl)-7-methyl-3-phenyl-1-tosylquinolin-2(1***H***)-one (6i) According to general procedure D, 6i was obtained as a white solid (54 mg, 91% yield). Melting Point: 164-166 °C**

¹**H NMR (500 MHz, CDCl₃)** δ 8.27 (dd, J_1 = 11.9 Hz, J_2 = 2.3 Hz, 1H), 8.15 (d, J = 8.3 Hz, 2H), 7.53 (dd, J_1 = 8.9 Hz, J_2 = 6.7 Hz, 1H), 7.37 (d, J = 8.3 Hz, 2H), 7.09-7.13 (m, 3H), 6.99 (td, J_1 = 7.8 Hz, J_2 = 2.3 Hz, 1H), 6.88-6.90 (m, 2H), 6.78 (s, 2H), 5.24 (s, 1H), 2.47 (s, 3H), 1.29 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 163.9, 162.0, 153.6, 150.6, 145.3, 138.0, 136.7, 135.6 (2C), 134.6, 131.3, 130.8, 130.5 (2C), 129.6 (2C), 128.7 (2C), 127.4 (2C), 127.0 (2C), 126.86, 125.9, 119.9, 111.7, 106.4, 34.2 (2C), 30.1 (6C), 21.7 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₆H₃₇FNO₄S 598.2427; found 598.2413.

4-(3,5-di-*tert***-butyl-4-hydroxyphenyl)-6-fluoro-3-phenyl-1-tosylquinolin-2(1***H***)-one (6j) According to general procedure D, 6j was obtained as a white solid (45 mg, 75% yield). Melting Point: 169-171 °C**

¹**H NMR (500 MHz, CDCl₃)** δ 8.40 (dd, J_1 = 9.3 Hz, J_2 = 4.6 Hz, 1H), 8.13 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.26-7.28 (m, 1H), 7.22 (dd, J_1 = 9.6 Hz, J_2 = 2.0 Hz, 1H), 7.07-7.16 (m, 3H), 6.88 (d, J = 3.4 Hz, 2H), 6.78 (s, 2H), 5.26 (s, 1H), 2.46 (s, 3H), 1.29 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 161.8, 159.8, 157.8, 153.7, 150.1 (d, J = 2.3 Hz), 145.2, 136.7, 135.7 (2C), 134.5, 133.3, 133.0 (d, J = 2.3 Hz), 130.4 (2C), 129.6 (2C), 128.7 (2C), 127.4 (2C), 127.0 (2C), 125.4, 125.2 (d, J = 7.8 Hz), 121.0 (d, J = 7.7 Hz), 116.8 (d, J = 23.3 Hz), 114.3 (d, J = 24.4 Hz), 34.2 (2C), 30.1 (6C), 21.7 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₆H₃₇FNO₄S 598.2427; found 598.2419

6-chloro-4-(3,5-di-*tert***-butyl-4-hydroxyphenyl)-3-phenyl-1-tosylquinolin-2(1***H***)-one (6k)** According to general procedure D, **6k** was obtained as a white solid (53 mg, 87% yield). Melting Point: 170-172 °C ¹**H NMR (500 MHz, CDCl₃)** δ 8.37 (d, J= 9.9 Hz, 1H), 8.13 (d, J= 8.2 Hz, 2H), 7.49-7.52 (m, 2H), 7.37 (d, J= 8.2 Hz, 2H), 7.12 (s, 1H), 7.11 (d, J= 2.3 Hz, 1H), 6.88 (q, J= 3.6 Hz, 2H), 6.77 (s, 2H), 5.27 (s, 1H), 2.46 (s, 3H), 1.29 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 161.7, 153.7, 149.9, 145.3, 136.6, 135.7 (2C), 135.2, 134.5, 133.3, 130.4 (2C), 129.8, 129.6 (2C), 129.4, 128.7 (2C), 128.1, 127.5 (2C), 127.1 (2C), 127.0, 125.2, 124.9, 120.6, 34.2 (2C), 30.1 (6C), 21.7 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₆H₃₇ClNO₄S 614.2132; found 614.2123

6-bromo-4-(3,5-di-*tert***-butyl-4-hydroxyphenyl)-3-phenyl-1-tosylquinolin-2(1***H***)-one (61) According to general procedure D, 6I was obtained as a white solid (59 mg, 89% yield). Melting Point: 172-175 °C**

¹**H** NMR (500 MHz, CDCl₃) δ 8.31 (d, J = 9.1 Hz, 1H), 8.13 (d, J = 8.3 Hz, 2H), 7.67 (d, J = 2.1 Hz, 1H), 7.66 (dd, J_1 = 9.1 Hz, J_2 = 2.2 Hz, 1H), 7.37 (d, J = 8.2 Hz, 2H), 7.12 (s, 1H), 7.11 (d, J = 2.2 Hz, 2H), 6.88 (m, 1H), 6.78 (s, 2H), 5.27 (s, 1H), 2.46 (s, 3H), 1.30 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 161.7, 153.8, 149.8, 145.3, 136.6, 135.7, 135.6 (2C), 134.5, 133.2, 132.2, 131.2, 130.4 (2C), 129.6 (2C), 128.8 (2C), 127.5 (2C), 127.2 (2C), 127.0, 125.2, 125.1, 120.8, 117.4, 34.2 (2C), 30.1 (6C), 21.7 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₆H₃₇BrNO₄S 658.1657; found 658.1611

4-(3,5-di-*tert*-**butyl-4-hydroxyphenyl)-6-methyl-3-phenyl-1-tosylquinolin-2(1***H***)-one (6m) According to general procedure D, 6m was obtained as a white solid (39 mg, 66% yield). Melting Point: 180-182 °C**

¹**H NMR (500 MHz, CDCl₃)** δ 8.30 (d, J = 8.8 Hz, 1H), 8.13 (d, J = 8.3 Hz, 2H), 7.36-7.39 (m, 2H), 7.33 (d, J = 11.4 Hz, 2H), 7.10 (s, 3H), 7.09 (d, J = 1.5 Hz, 1H), 6.88 (dd, J_1 = 7.6 Hz, J_2 = 2.7 Hz, 2H), 6.79 (s, 2H), 5.23 (s, 1H), 2.45 (s, 3H), 2.35 (s, 3H), 1.29 (s, 18H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 162.1, 153.4, 150.9, 144.9, 137.0, 135.4 (2C), 135.0, 134.7, 133.7, 132.2, 130.6 (2C), 130.5, 129.5 (2C), 128.7, 128.6 (2C), 127.4 (2C), 127.3 (2C), 126.7, 126.0, 123.3, 119.1, 34.2 (2C), 30.2 (6C), 21.7, 20.9 ppm.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₇H₄₀NO₄S 594.2678; found 594.2666

6. Characterization data for 7:

4-(4-hydroxy-3,5-dimethylphenyl)-3-phenyl-1-tosylquinolin-2(1*H*)-one (7)

According to general procedure E, 7 was obtained as a brown solid (36 mg, 78% yield). Melting Point: 165-167 °C

¹**H NMR (500 MHz, CDCl₃)** δ 8.41 (d, J = 8.7 Hz, 1H), 8.15 (d, J = 8.4 Hz, 2H), 7.53-7.57 (m, 1H), 7.36 (d, J = 8.2 Hz, 2H), 7.30 (dd, J_1 = 8.1 Hz, J_2 = 1.5 Hz, 1H), 7.19-7.23 (m, 1H), 7.11-7.16 (m, 3H), 6.92-6.97 (m, 4H), 6.71-6.74 (m, 2H), 2.46 (s, 3H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 162.2, 155.3, 149.7, 145.2, 136.8, 136.6, 134.2, 132.7, 131.1 (2C), 130.5 (2C), 129.7, 129.6 (2C), 128.7 (2C), 128.6, 127.7, 127.6 (2C), 127.2, 124.2, 123.5, 119.1, 115.1 (2C), 21.7 ppm. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₈H₂₂NO₄S 468.1270; found 468.1271.

7. Characterization data for 11 and 12:

N-(2-((3,5-di-*tert*-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)methyl)phenyl)-4-methyl-N-(2-oxobutyl)benzenesulfonamide (11)

According to general procedure B, **11** was obtained as a yellow solid (11 mg, 20% yield). Melting Point: 157-159 °C

¹**H NMR (500 MHz, CDCl₃)** δ 7.56 (d, J= 7.9 Hz, 2H), 7.33-7.42 (m, 4H), 7.25 (d, J = 7.8 Hz, 2H), 7.21 (s, 1H), 7.10 (s, 1H), 6.83 (s, 1H), 4.38 (s, 2H), 2.50 (q, J = 7.2 Hz, 2H), 2.39 (s, 3H), 1.36 (s, 9H), 1.29 (s, 9H), 1.06 (t, J = 7.2 Hz, 3H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 205.3, 186.6, 149.3, 147.8, 144.2, 139.5, 138.7, 135.9, 135.7, 135.1, 132.7, 132.4, 131.4, 129.9, 129.6 (2C), 128.6, 128.0 (2C), 127.6, 60.3, 35.4, 35.0, 33.0, 29.5 (6C), 21.6, 7.3 ppm. HRMS (ESI): m/z [M+H]⁺ calcd for C₃₂H₄₀NO₄S 534.2678; found 534.2678.

N-(2-((3,5-di-*tert*-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)methyl)phenyl)-N-(3,3-dimethyl-2-oxobutyl)-4-methylbenzenesulfonamide (12)

According to general procedure B, 12 was obtained as a yellow solid (31 mg, 55% yield).

Melting Point: 191-193 °C

¹**H NMR (500 MHz, CDCl₃)** δ 7.58 (d, J = 8.1 Hz, 2H), 7.34-7.42 (m, 4H), 7.28 (s, 1H), 7.24 (s, 1H), 7.21-7.22 (m, 2H), 6.91 (d, J = 2.0 Hz, 1H), 2.34 (s, 3H), 2.25 (s, 2H), 1.37 (s, 9H), 1.29 (s, 9H), 1.11 (s, 9H) ppm. ¹³**C NMR (126 MHz, CDCl₃)** δ 208.6, 186.6, 149.1, 147.6, 143.9, 139.3, 139.3, 136.3, 136.2, 135.2, 132.6, 132.3, 131.6, 129.8, 129.5 (2C), 128.5, 128.1 (2C), 127.8, 55.9, 43.3, 35.4, 35.0, 29.6 (2C), 29.5 (2C), 26.1 (2C), 21.7 ppm.

8. Crystal structure of 4d:

Crystal of **4d** was grown by slow evaporation of petroleum ether/ethyl acetate solution of **4d** at room temperature (20 °C). X-ray diffraction data was collected at 296(2) K on a Bruker Kappa Apex Duo diffractometer with graded-multilayer focused CuK(alpha) X-rays.

Figure S1. Crystal structure of 4d with thermal ellipsoids at 30% probability

Identification code	22_a_sq		
Empirical formula	C37 H39 N O5 S		
Formula weight	609.75		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	$P2_1/c$		
Unit cell dimensions	a = 17.140(3) Å	α= 90°.	
	b = 18.380(3) Å	β=103.530(3)°.	
	c = 12.352(2) Å	$\gamma = 90^{\circ}$.	
Volume	3783.5(11) Å ³		
Z	4		
Density (calculated)	1.070 Mg/m ³		
Absorption coefficient	0.123 mm ⁻¹		
F(000)	1296		
Crystal size	0.120 x 0.110 x 0.080 mm ³		
Theta range for data collection	1.649 to 25.009°.		
Index ranges	-20<=h<=20, -17<=k<=21, -14<=l<=14		
Reflections collected	27939		
Independent reflections	6630 [R(int) = 0.0381]		
Completeness to theta = 25.009°	99.4 %		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	6630 / 2 / 406		
Goodness-of-fit on F ²	1.047		
Final R indices [I>2sigma(I)]	R1 = 0.0480, $wR2 = 0.1392$		

R indices (all data)R1 = 0.0678, wR2 = 0.1553Extinction coefficientn/aLargest diff. peak and hole0.283 and -0.246 e.Å⁻³

9. NMR Spectra:

¹H NMR of **3a**:

¹³C NMR of **3a**:

¹H NMR of **3b**

¹³C NMR of **3b**

¹H NMR of 3c

¹H NMR of 3d

¹³C NMR of **3d**:

¹H NMR of **3e**

¹³C NMR of **3e**:

¹H NMR of 3f

¹³C NMR of **3f**:

¹H NMR of **3g**

¹³C NMR of **3g**:

¹H NMR of **3h**

¹³C NMR of **3h**:

¹H NMR of **3i**

¹³C NMR of **3i**:

¹H NMR of **4a**:

¹³C NMR of 4a:

¹H NMR of **4b**:

¹³C NMR of **4b**:

¹H NMR of **4c**:

¹³C NMR of **4c**:

¹³C NMR of **4d**:

¹H NMR of **4e**:

¹³C NMR of **4e**:

¹H NMR of **4f**:

¹³C NMR of **4f**:

¹H NMR of **4g**:

¹³C NMR of **4g**:

¹H NMR of **4i**

¹³C NMR of **4i**

¹H NMR of **4m**

¹H NMR of **4n**

¹³C NMR of **4**q

¹H NMR of **4**r

¹³C NMR of 4r

¹H NMR of **4s**

¹³C NMR of 4s

¹H NMR of 4t

¹³C NMR of 4t

¹H NMR of **6b**

¹³C NMR of **6b**

¹³C NMR of **6d**

¹³C NMR of **6e**

¹³C NMR of **6f**

¹H NMR of **6h**

¹H NMR of 6i

¹³C NMR of **6i**

¹H NMR of **6k**

1 H NMR of **6**l

¹H NMR of **6m**

¹³C NMR of **6m**

¹H NMR of **12**

