Supporting Information

One-pot synthesis of formic acid via hydrolysis-oxidation of potato starch in the presence of cesium salts of heteropoly acid catalysts

Nikolay V. Gromov*, Tatiana B. Medvedeva, Yulia A. Rodikova, Dmitrii E. Babushkin, Valentina N. Panchenko, Maria N. Timofeeva, Elena G. Zhizhina, Oxana P. Taran, Valentin N. Parmon

Boreskov Institute of Catalysis SB RAS, Lavrentiev av., 5, Novosibirsk, 630090, Russia

Corresponding authors

Nikolay V. Gromov, PhD, associate professor Tel.: +7-383-32-69-591 Fax: +7-383-33-08-056 E-mail: gromov@catalysis.ru Address: Boreskov Institute of Catalysis SB RAS, Lavrentiev av., 5, 630090, Novosibirsk, Russian Federation

Content

		Page
1	One-pot hydrolysis-oxidation of different types of plant materials to formic	3
	acid (Literature data)	
2	Synthesis of heteropoly acids	13
3	Characterization of Cs-salts of heteropoly acids	13
4	References	14

1. One-pot hydrolysis-oxidation of different types of plant materials to formic acid (Literature data)

Table S1. The main catalytic systems for one-pot hydrolysis-oxidation of monosaccharides into formic acid

	Catal	yst	Experimental condition	Experimental conditions			
Run					Conversion,	Yield of FA	Ref.
		Amount		Substrate	(%)	(%)	
			Substrate – Glucose	, ,			
1	$H_5PV_2Mo_{10}O_{40}$	0.735-38.8 mmol	333-363 K, 30 bar O ₂ , 3-22 h	16.7-50 mmol	98:	8-50	[1]
2	H ₈ PV ₅ Mo ₇ O ₄₀	0.5 mmol	363 K, 20 bar O ₂ , 6-48 h,	1.8 g	-	18-85	[2]
			1000 rpm				
			$V_{H2O} = 100 \text{ mL}, \text{ m}_{alcohol} = 100 \text{ g}.$				
			Alcohol: 1-Hexanol or 1-				
			Heptanol				
3	$H_5PV_2Mo_{10}O_{40}$	1 mmol	353 K, 60 bar O ₂ , 8 h, 1000 rpm,	62.5-500	-	16-38	[3]
			$V_{\rm H2O} = 200 \rm mL$	mmol L ⁻¹			
4	H ₈ PV ₅ Mo ₇ O ₄₀	-	353 K, 60 bar O ₂ , 8 h, 1000 rpm	125 mmol L ⁻¹	-	> 85	[3]
5	$H_5PV_2Mo_{10}O_{40}$,	10 mol %	373 K, 20 bar O ₂ , 2 h, 1000 rpm	2.5 g	-	36	[4]
			$V_{H2O} = 50 \text{ mL}$				
6	$NaVO_3 - H_2SO_4$	22 mg - 0.7 wt%	433 K, 30 bar O ₂ , 1 min	100 mg	100	68	[5]
			$V_{H2O} = 6 \text{ mL}$				_
7	H ₄ PVMo ₁₁ O ₄₀	0.1 mmol	453 K, 20 bar O ₂ , 3 h, 600 rpm	0.2 g	100	55	[6]
			$V_{H2O} = 20 \text{ mL}$				

Table S1. (Continue)

	Catalys	st	Experimental condition	Results	5		
Run					Conversion,	Yield of FA	Ref.
		Amount		Substrate	(%)	(%)	
			Substrate – Xylose				
8	$H_5PV_2Mo_{10}O_{40}$	0.03 mmol	353 K, 30 bar O ₂ , 26 h	120 mg	98	54	[1]
9	$NaVO_3 - H_2SO_4$	22 mg - 0.7 wt%	433 K, 30 bar O ₂ , 1 min	100 mg	100	66	[5]
			$V_{H2O} = 6 \text{ mL}$				
10	$H_4PVMo_{11}O_{40}$	0.1 mmol	453 K, 20 bar O ₂ , 3 h, 600 rpm	0.2 g	100	33	[6]
			$V_{H2O} = 20 \text{ mL}$				
11	[MIMPS] ₃ HPMo ₁₁ VO ₄₀	0.05 mmol	453 K, 10 bar O ₂ , 1 h	2 mmol	100	55	[11]
			$V_{H2O} = 5 \text{ mL}$				
			Substrate – Sorbitol				
12	$H_5PV_2Mo_{10}O_{40}$	0.03 mmol	353 K, 30 bar O ₂ , 26 h	120 mg	98	56	[1]
13	$H_5PV_2Mo_{10}O_{40}$	1 mmol	353 K, 60 bar O ₂ , 8 h, 1000 rpm	125-500	-	15-31	[3]
			$V_{\rm H2O} = 200 \ \rm mL$	mmol L ⁻¹			
14	H ₄ PVMo ₁₁ O ₄₀	0.1 mmol	453 K, 20 bar O ₂ , 3 h, 600 rpm	0.2 g	100	44	[6]
			$V_{H2O} = 20 \text{ mL}$				

	Catalyst		Experimental condition	Experimental conditions			
Run				G 1 4 4	Conversion,	Yield of FA	Ref.
		Amount		Substrate	(%)	(%)	
			Substrate – Cellobios	se			
1	H ₅ PV ₂ Mo ₁₀ O ₄₀	0.03 mmol	353 K, 30 bar O ₂ , 26 h	120 mg	98	47	[1]
2	H ₅ PV ₂ Mo ₁₀ O ₄₀	1 mmol	353 K, 60 bar O_2 , 8 h, 1000 rpm V _{H2O} = 200 mL	125 mmol L ⁻¹	-	$(FA+CO_2) = 10\%$	[3]
3	H ₈ PV ₅ Mo ₇ O ₄₀	1 mmol	$353 \text{ K}, 30 \text{ bar O}_2, 8 \text{ h}, 1000 \text{ rpm}$ V _{H2O} = 200 mL	125 mmol L ⁻¹	-	$(FA+CO_2) = 19\%$	[3]
	Substrate – Sucrose						
4	H ₅ PV ₂ Mo ₁₀ O ₄₀	0.03 mmol	353 K, 30 bar O ₂ , 26 h	120 mg	98	48	[1]
5	H ₈ PV ₅ Mo ₇ O ₄₀	0.5 mmol	363 K, 20 bar O_2 , 6-48 h, 1000 rpm $V_{H2O} = 100$ mL, $m_{alcohol} = 100$ g. Alcohol: 1-Hexanol, 1-Heptanol	3.44 g	-	45-76	[2]
6	$H_5PV_2Mo_{10}O_{40}$	1 mmol	$\begin{array}{c} 353 \text{ K}, 60 \text{ bar } \text{O}_2, 8 \text{ h}, 1000 \text{ rpm} \\ \text{V}_{\text{H2O}} = 200 \text{ mL} \end{array}$	25 mmol L ⁻¹	-	$(FA+CO_2) = 78\%$	[3]
7	H ₈ PV ₅ Mo ₇ O ₄₀	1 mmol	353 K, 60 bar O ₂ , 8 h, 1000 rpm V _{H2O} = 200 mL	25 mmol L ⁻¹	-	$(FA+CO_2) = 100\%$	[3]
8	NaVO ₃ – H ₂ SO ₄	22 mg - 0.7 wt%	433 K, 30 bar O ₂ , 5 min V _{H2O} = 6 mL	100 mg	100	65	[5]

Table S2. The main catalytic systems for one-pot hydrolysis-oxidation of disaccharides into formic acid

	Catal	yst	Experimental condition	ons	Result	S	
Run				<u> </u>	Conversion,	Yield of FA	Ref.
		Amount		Substrate	(%)	(%)	
			Substrate – Starch				
1	VOSO ₄	0.1 mmol	413 K, 20 bar O ₂ , 1.5 h V _{H2O} = 20 mL	1 mmol	-	46	[12]
		-	Substrate – Cellulose	9			
2	H ₅ PV ₂ Mo ₁₀ O ₄₀	0.03 mmol	353 K, 30 bar O ₂ , 26 h	120 mg	n.d	1	[1]
3	H ₈ PV ₅ Mo ₇ O ₄₀ - p-toluenesulfonic acid	2 mmol 20 mmol	363 K, 50 bar O ₂ , 5-72 h, 1000 rpm V _{H2O} = 200 mL	100 mmol	-	3-31	[3]
4	$H_5PV_2Mo_{10}O_{40}$	5 mol %	443 K, 50 bar O ₂ , 9 h, 1000 rpm V _{H2O} = 50 mL	0.5 g	-	35	[4]
5	$NaVO_3 - H_2SO_4$	22 mg - 0.7 wt%	433 K, 30 bar O ₂ , 120 min V _{H2O} = 6 mL	100 mg	100	65	[5]
6	Co _{0.6} H _{3.8} PMo ₁₀ V ₂ O ₄₀	0.01M	433 K, 20 bar O_2 , 5 h, 1500 rpm V _{H2O} = 60 mL	0.6 g	-	66	[7]
7	H ₅ PV ₂ Mo ₁₀ O ₄₀	0.75 mmol	$363 \text{ K}, 30 \text{ bar O}_2, 24 \text{ h}, 1000$ rpm $V_{\text{H2O}} = 100 \text{ mL}$	2.7 g	-	$(FA + CO_2) - 15\%$	[8]
8	H ₅ PV ₂ Mo ₁₀ O ₄₀ - p-toluenesulfonic acid	0.75 mmol 1.9 g	363 K, 30 bar O ₂ , 66 h, 1000 rpm V _{H2O} = 100 mL	2.7 g	-	$(FA + CO_2) - 68\%$	[8]
9	H ₄ PVMo ₁₁ O ₄₀	0.1 mmol	453 K, 20 bar O ₂ , 3 h, 600 rpm V _{H2O} = 20 mL	0.2 g	-	61	[6]
10	H ₄ PVMo ₁₁ O ₄₀	0.1 mmol	453 K, 6 bar O ₂ , 3 h, 600 rpm V _{H2O} = 20 mL	0.2 g	100	68	[6]

Table S3. The main catalytic systems for one-pot hydrolysis-oxidation of polysaccharides into formic acid

Table S3. (Continue)

	Catalyst		Experimental conditions		Result	S		
Run				G 1 4 4	Conversion,	Yield of FA	Ref.	
		Amount		Substrate	(%)	(%)		
			Substrate – Cellulose					
11	Co _{0.6} H _{3.8} PMo ₁₀ V ₂ O ₄₀	0.01M	423 K, 20 bar O_2 , 7 h, 1500 rpm V _{H2O} = 60 mL	0.6 g	-	29	[9]	
12	NaVO ₃ -H ₂ SO ₄	2% - 0.35%	433 K, 30 bar O_2 , 5 min V _{H2O} = 6 mL	0.05 g	98	95	[10]	
13	[MIMPS] ₃ HPMo ₁₁ VO ₄₀	0.05 mmol	453 K, 10 bar O ₂ , 1 h V _{H2O} = 5 mL	0.335 g	93	51	[11]	
14	VOSO ₄	0.2 mmol	453 K, 20 bar O_2 , 2 h $V_{H2O} = 20 \text{ mL}$	1 mmol	-	39	[12]	
	Substrate – Xylan (hemicellulose)							
15	H ₅ PV ₂ Mo ₁₀ O ₄₀	0.03 mmol	353 K, 30 bar O ₂ , 26 h	120 mg	n.d.	33	[1]	
16	NaVO ₃ – H ₂ SO ₄	22 mg - 0.7 wt%	433 K, 30 bar O_2 , 30 min V _{H2O} = 6 mL	100 mg	100	64	[5]	
17	H ₅ PV ₂ Mo ₁₀ O ₄₀	0.75 mmol	363 K, 30 bar O ₂ , 24 h, 1000 rpm $V_{H2O} = 100 \text{ mL}$	2.7 g	-	(FA + CO ₂) - 88%	[8]	
18	H ₅ PV ₂ Mo ₁₀ O ₄₀ - p-toluenesulfonic acid	0.75 mmol 1.9 g	363 K, 30 bar O_2 , 66 h, 1000 rpm $V_{H2O} = 100 \text{ mL}$	2.7 g	-	$(FA + CO_2) - 100\%$	[8]	
19	Co _{0.6} H _{3.8} PMo ₁₀ V ₂ O ₄₀	0.01M	$\begin{array}{c} 393 \text{ K}, 20 \text{ bar O}_2, 2 \text{ h}, 1500 \text{ rpm} \\ V_{\text{H2O}} = 60 \text{ mL} \end{array}$	0.6 g	-	42	[9]	

Table S3. (Continue)

Deer	Catalyst		Experimental condition	Results						
Run		A monost		Substants	Conversion,	Yield of FA	Ref.			
		Amount		Substrate	(%)	(%)				
			Substrate – Xylan (hemicel	lulose)						
20	NaVO ₃ -H ₂ SO ₄	2% - 0.35%	433 K, 30 bar O ₂ , 5 min	0.05 g	-	86	[10]			
			$V_{H2O} = 6 \text{ mL}$							
21	$K_5V_3W_3O_{19}$	1 mmol	363 K, 30 bar O ₂ , 24 h, 1000	100 mmol	-	24	[13]			
			rpm							
			$V_{H2O} = 100 \text{ mL}$							
	Substrate – Arabinogalactan (hemicellulose)									
22	Co _{0.6} H _{3.8} PMo ₁₀ V ₂ O ₄₀	0.01 M	393 K, 20 bar O ₂ , 1 h, 1500 rpm	0.6 g	-	40	[9]			
			$V_{\rm H2O} = 60 \rm mL$							

	Catalyst		Experimental condition	Results				
Run		Amount		Lionin	Conversion,	Yield of FA	Ref.	
		Amount		Lightin	(%)	(%)		
1	$H_5PV_2Mo_{10}O_{40}$	0.03 mmol	353 K, 30 bar O ₂ , 26 h	120 mg	n.d.	14	[1]	
2	H ₅ PV ₂ Mo ₁₀ O ₄₀	0.75 mmol	363 K, 30 bar O ₂ , 66 h, 1000	2.7 g	-	$(FA + CO_2)$	[8]	
			rpm			- 100%		
			$V_{\rm H2O} = 100 \rm{mL}$					
3	$H_5PV_2Mo_{10}O_{40}$	0.75 mmol	363 K, 30 bar O ₂ , 66 h, 1000	2.7 g	-	$(FA + CO_2)$	[8]	
	- p-toluenesulfonic	1.9 g	rpm			- 100%		
	acid	_	$V_{\rm H2O} = 100 \rm mL$					
4	NaVO ₃ -H ₂ SO ₄	2% - 0.35%	433 K, 30 bar O ₂ , 5 min	0.05 g	88	17	[10]	
			$V_{H2O} = 6 \text{ mL}$					
5	K ₅ V ₃ W ₃ O ₁₉	1mmol	363 K, 30 bar O ₂ , 24 h, 1000	100 mmol	-	7	[13]	
			rpm					
			$\bar{V}_{H2O} = 100 \text{ mL}$					

|--|

	Catalyst		Experimental co	onditions		Res	sults	
Run		Amount		Biom	nass	Conversion,	Yield of FA	Ref.
		Amount			Amount	(%)	(%)	
1	$H_5PV_2Mo_{10}O_{40}$	0.03 mmol	353 K, 30 bar O ₂ , 26 h	poplar sawdust	120 mg	n.d.	1	[1]
2	$H_5PV_2Mo_{10}O_{40}$	0.75 mmol	363 K, 30 bar O_2 , 24 h, 100 rpm $V_{H2O} = 100 \text{ mL}$	poplar	2.7 g	-	$(FA + CO_2) - 77\%$	[8]
3	H ₅ PV ₂ Mo ₁₀ O ₄₀ - p-toluenesulfonic acid	0.75 mmol 1.9 g	363 K, 30 bar O_2 , 66 h, 1000 rpm $V_{H2O} = 100 \text{ mL}$	poplar	2.7 g	-	$(FA + CO_2) - 80\%$	[8]
4	$H_4PVMo_{11}O_{40}$	0.1 mmol	453 K, 6 bar O_2 , 3 h, 600 rpm V _{H2O} = 20 mL	bagasse	0.2 g	100	61 AA - 20%	[6]
5	$H_4PVMo_{11}O_{40}$	0.1 mmol	453 K, 20 bar O_2 , 3 h, 600 rpm $V_{H2O} = 20 \text{ mL}$	hay	0.2 g	100	55 AA - 14%	[6]
6	H ₈ PV ₅ Mo ₇ O ₄₀	0.5 mmol	363 K, 20 bar O_2 , 6-48 h, 1000 rpm $V_{H2O} = 100 \text{ mL}, \text{ m}_{alcohol} = 100 \text{ g}.$ Alcohol: 1-Hexanol, 1-Heptanol	beech wood	1.63 g	-	10-61	[2]
7	H ₈ PV ₅ Mo ₇ O ₄₀ - p-toluenesulfonic acid	2 mmol 20 mmol	$363 \text{ K}, 50 \text{ bar O}_2, 1-24 \text{ h}, 1000$ rpm $V_{\text{H2O}} = 200 \text{ mL}$	beech wood	100 mmol	-	2-29	[3]
8	$H_5PV_2Mo_{10}O_{40}$	0.75 mmol	363 K, 30 bar O_2 , 24 h, 1000 rpm $V_{H2O} = 100 \text{ mL}$	beech	2.7 g	-	$(FA + CO_2) - 52\%$	[8]
9	H ₅ PV ₂ Mo ₁₀ O ₄₀ - p-toluenesulfonic acid	0.75 mmol 1.9 g	363 K, $\overline{30 \text{ bar } O_2, 66 \text{ h}, 1000}$ rpm V _{H2O} = 100 mL	beech	2.7 g		$(\overline{\mathrm{FA}+\mathrm{CO}_2})$ -87%	[8]

	Table S5.	The main	catalytic s	vstems for	one-pot l	nydrol	ysis-oxi	dation	of biomass	s into	formic a	acid
--	-----------	----------	-------------	------------	-----------	--------	----------	--------	------------	--------	----------	------

Table S5. (Continue)

	Catalyst		Experimental conditions			Res	sults	
Run		Amount		Bioma	ass	Conversion,	Yield of FA	Ref.
		Amount			Amount	(%)	(%)	
10	K ₅ V ₃ W ₃ O ₁₉	1mmol	388 K, 50 bar O ₂ , 72 h, 1100	beech	4 mmol	-	13	[13]
			rpm					
11		0.0116	$V_{\rm H2O} = 10 \text{mL}$	1	0.6		52	503
	$Co_{0.6}H_{3.8}PMo_{10}V_2O_{40}$	0.01M	$423 \text{ K}, 20 \text{ bar O}_2, 7 \text{ h}, 1500 \text{ rpm}$ V _{H2O} = 60 mL	aspen wood	0.6 g	-	53	[9]
12	H ₈ PV ₅ Mo ₇ O ₄₀	2 mmol	363 K, 50 bar O ₂ , 5-24 h, 1000	spruce wood	100 mmol	-	17-35	[3]
	- p-toluenesulfonic	20 mmol	rpm					
	acid		$V_{\rm H2O} = 200 \rm mL$					
13	$H_5PV_2Mo_{10}O_{40}$	0.75 mmol	363 K, 30 bar O ₂ , 24 h, 1000	pine	2.7 g	-	$(FA + CO_2)$	[8]
			rpm				- 48%	
			$V_{\rm H2O} = 100 \rm mL$					
14	$H_5PV_2Mo_{10}O_{40}$	0.75 mmol	363 K, 30 bar O ₂ , 24 h, 1000	pine	2.7 g	-	$(FA + CO_2)$	[8]
	- p-toluenesulfonic	1.9 g	rpm				- 72%	
	acid		$V_{\rm H2O} = 100 \rm mL$					
15	$H_5PV_2Mo_{10}O_{40}$	0.75 mmol	363 K, 30 bar O ₂ , 24 h, 100 rpm	waste paper	2.7 g	-	$(FA + CO_2)$	[8]
			$V_{\rm H2O} = 100 \rm mL$				- 26%	
16	$H_5PV_2Mo_{10}O_{40}$	0.75 mmol	363 K, 30 bar O ₂ , 24 h, 1000	waste paper	2.7 g	-	$(FA + CO_2)$	[8]
	- p-toluenesulfonic	1.9 g	rpm				- 68%	
	acid		$V_{\rm H2O} = 100 \ \rm mL$					
17	$H_5PV_2Mo_{10}O_{40}$	0.75 mmol	363 K, 30 bar O ₂ , 24 h, 1000	cyanobacteria	2.7 g	-	$(FA + CO_2)$	[8]
			rpm				- 33%	
			$V_{\rm H2O} = 100 \rm mL$					

Table S5. (Continue)

	Catalyst		Experimental conditions			Results		
Run		Amount		Biomass		Conversion,	Yield of FA	Ref.
					Amount	(%)	(%)	
18	$H_5PV_2Mo_{10}O_{40}$	0.75 mmol	363 K, 30 bar O ₂ , 24 h, 1000	cyanobacteria	2.7 g	-	$(FA + CO_2)$	[8]
	- p-toluenesulfonic acid	1.9 g	rpm				- 71%	
			$V_{H2O} = 100 \text{ mL}$					
19	Co _{0.6} H _{3.8} PMo ₁₀ V ₂ O ₄₀	0.01M	423 K, 20 bar O ₂ , 7 h, 1500 rpm	miscanthus	0.6 g	-	45	[9]
			$V_{H2O} = 60 \text{ mL}$					
20	Co _{0.6} H _{3.8} PMo ₁₀ V ₂ O ₄₀	0.01M	423 K, 20 bar O ₂ , 7 h, 1500 rpm	waste paper	0.6 g	-	24	[9]
			$V_{\rm H2O} = 60 \text{ mL}$					
21	NaVO ₃ -H ₂ SO ₄	2% - 0.35%	433 K, 30 bar O ₂ , 5 min	wheat straw	0.05 g	100	75	[10]
			$V_{H2O} = 6 \text{ mL}$		-			

2. Synthesis of heteropoly acids

2.1. Synthesis of H₄PW₁₁VO₄₀

Stage A: Commercially available $H_3PW_{12}O_{40}$ (15 g) were dissolved in 100 mL of H_2O at room temperature. When the acids were completely dissolved, pH of the solutions were adjusted to 4.8 for $[PW_{11}O_{39}]^{7-}$ by adding drop by drop concentrated NaOH solution.

Stage B: Synthesis of decavanadic acid $H_6V_{10}O_{28}$. Diluted aqueous solution of 0.0175 M $H_6V_{10}O_{28}$ was prepared from V_2O_5 by the "peroxide" method.

Stage C: The $H_6V_{10}O_{28}$ solution prepared at stage B was added to the solution of $[PW_{11}O_{39}]^{7-}$ prepared at Stage A. The solutions were mixed under stirring at room temperature.

2.1. Synthesis of H₅SiW₁₁VO₄₀

Stage A: synthesis of $[SiW_{11}O_{39}]^{8-}$ anions. Commercially available $H_4SiW_{12}O_{40}$ (15 g) were dissolved in 100 mL of H_2O at room temperature. When the acids were completely dissolved, pH of the solutions were adjusted to 5.5-6.0 for $[SiW_{11}O_{39}]^{8-}$ by adding drop by drop concentrated NaOH solution.

Stage B: Synthesis of decavanadic acid $H_6V_{10}O_{28}$. Diluted aqueous solution of 0.0175 M $H_6V_{10}O_{28}$ was prepared from V_2O_5 by the "peroxide" method (see our previous paper [14].

Stage C: The $H_6V_{10}O_{28}$ solution prepared at stage B was added to the solution of $[SiW_{11}O_{39}]^{8-}$ prepared at Stage A. The solutions were mixed under stirring at room temperature.

3. Characterization of Cs-salts of heteropoly acids

Figure S1. Adsorption-desorption isotherms of N₂ onto cesium salts of heteropoly acids

Figure S2. Correlation between pH and amount of cesium salts of heteropoly acids in water

Figure S3. IR spectrum of adsorbed pyridine onto $Cs_{3.5}H_{0.5}PMo_{11}VO_{40}$ and $Cs_{4.5}H_{0.5}SiW_{11}VO_{40}$

Figure S4 ¹³C NMR spectra of the sample Cs-PMoV: inverse gated (top) and INEPT+ (no decoupling, bottom).

Figure S5 ¹³C NMR spectra of the sample Cs-PWV: ${}^{13}C{}^{1}H{}$ (top) and DEPT45 (bottom).

Figure S6¹³C NMR spectrum of the sample Cs-SiWV (inverse gated).

CH₃COOH: ¹H (δ, ppm): 2.08; ¹³C (δ, ppm): 21.03, 177.38 HCOOH: ¹H (δ, ppm): 8.23; ¹³C (δ, ppm): 166.6 HOCH₂COOH: ¹H (δ, ppm): 4.20; ¹³C (δ, ppm): 60.02, 177.06 (CH₂COOH)₂: ¹H (δ, ppm): 2.66; ¹³C (δ, ppm): 29.39, 177.76 CH₂(OH)₂: ¹H (δ, ppm): 4.84; ¹³C (δ, ppm): 82.47

Scheme S1. Mechanism of formic acid formation from glucose ¹⁵

3. References

- Wolfel R., Taccardi N., Bosmann A., Wasserscheid P. Selective catalytic conversion of biobased carbohydrates to formic acid using molecular oxygen // Green Chemistry. – 2011.
 V.13. – P. 2759-2763. DOI:10.1039/C1GC15434F
- 2 Reichert J., Brunner B., Jess A., Wasserscheid P., Albert J. Biomass oxidation to formic acid in

aqueous media using polyoxometalate catalysts – boosting FA selectivity by in-situ extraction // Energy & Environmental Science. – 2015. – V.8. – P. 2985-2990. DOI: 10.1039/c5ee01706h

- 3 Reichert J., Albert J. Detailed Kinetic Investigations on the Selective Oxidation of Biomass to Formic Acid (OxFA Process) Using Model Substrates and Real Biomass // ACS Sustainable Chemistry & Engineering. 2017. V.5. P. 7383-7392. https://doi.org/10.1021/acssuschemeng.7b01723
- 4 Li J., Ding D.-J., Deng L., Guo Q.-X., Fu Y. Catalytic air oxidation of biomass-derived carbohydrates to formic acid // ChemSusChem. – 2012. – V.5. – P. 1313-1318. DOI: 10.1002/cssc.201100466.
- 5 Wang W., Niu M., Hou Y., Wu W., Liu Z., Liu Q., Ren S., Marsh K.N. Catalytic conversion of biomass-derived carbohydrates to formic acid using molecular oxygen // Green Chemistry. – 2014. – V.16. – P. 2614–2618. https://doi.org/10.1039/C4GC00145A
- 6 Zhang J., Sun M., Liu X., Han Y. Catalytic oxidative conversion of cellulosic biomass to formic acid and acetic acid with exceptionally high yields // Catalysis Today. – 2014. – V. 233. – P. 77-82. http://dx.doi.org/10.1016/j.cattod.2013.12.010
- 7 Gromov N. V., Taran O. P., Delidovich I. V., Pestunov A.V., Rodikova Yu.A., Yatsenko D.A., Zhizhina E.G., Parmon V.N. Hydrolytic Oxidation of Cellulose to Formic Acid in the Presence of Heteropoly Acid Catalysts for Efficient Processing of Lignocellulosic Biomass // Catalysis Today. 2016. –V. 278. P. 74-81. http://dx.doi.org/10.1016/j.cattod.2016.03.030
- 8 Albert J., Wolfel R., Bosmann A., Wasserscheid P. Selective oxidation of complex, water-insoluble biomass to formic acid using additives as reaction accelerators // Energy & Environmental Science. 2012. V. 5. P. 7956-7962. https://doi.org/10.1039/C2EE21428H
- 9 Gromov N.V., Medvedeva T.B., Rodikova Y.A., Pestunov A.V., Zhizhina E.G., Taran O.P. The Production of Formic Acid from Polysaccharides and Biomass via One-pot Hydrolysis-Oxidation in the Presence of Mo-V-P Heteropoly Acid Catalyst // Journal of Siberian Federal University. Chemistry 1. – 2018. – V.11. – P. 56-71. DOI: 10.17516/1998-2836-0058
- 10 Niu M., Hou Y., Ren S., Wu W., Marsh K.N. Conversion of wheat straw into formic acid in NaVO₃-H₂SO₄ aqueous solution with molecular oxygen // Green Chemistry. 2015. V.17. P. 453-459. DOI: 10.1039/c4gc01440e
- 11 Xu J., Zhang H., Zhao Y., Yang Z., Yu B., Xu H., Liu Z. Heteropolyanion-based ionic liquids catalysed conversion of cellulose into formic acid without any additives //Green Chemistry. – 2014. – V.16. – P. 4931–4935. https://doi.org/10.1039/C4GC01252F

- 12 Tang Z., Deng W., Wang Y., Zhu E., Wan X., Zhang Q., Wang Y. Transformation of cellulose and its derived carbohydrates into formic and lactic acids catalyzed by vanadyl cations // ChemSusChem. – 2014. – V.7. – P. 1557–1567. DOI: 10.1002/cssc.201400150
- 13 Voß D., Pickel H., Albert J. Improving the fractionated catalytic oxidation of lignocellulosic biomass to formic acid and cellulose by using design of experiments // ACS ACS Sustainable Chemistry & Engineering. 2019. V.7. P. 9754–9762. https://doi.org/10.1021/acssuschemeng.8b05095
- 14 V.F.Odyakov, E.G. Zhizhina, Russ. J. Inorg. Chem. 54 (2009) 361. https://doi.org/10.1134/S003602360903005X
- 15 Tang Z., Deng W., Wang Y., et al. Transformation of Cellulose and its Derived Carbohydrates into Formic and Lactic Acids Catalyzed by Vanadyl Cations // ChemSusChem. - 2014. - V. 7. - N. 6. - P. 1557-1567.