Electronic Supporting Information

Magnetic and spectroscopic properties of Ni-Zn-Al ferrite spinel: from the nanoscale to microscale

Jalel. Massoudi^{1,*}, Mourad. Smari^{1,2}, Kamel. Nouri³, Essebti. Dhahri¹, Kamel. Khirouni⁴, Sylvain. Bertaina⁵, Lotfi. Bessais³ and El.Kebir. Hlil⁶

¹Laboratoire de Physique Appliquée, Faculté des Sciences, Université de Sfax, B.P. 1171, Sfax 3000, Tunisia
²CICECO, Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
³CMTR, ICMPE, UMR 7182 CNRS-UPEC, 2 rue Henri Dunant, F-94320 Thiais, France
⁴Laboratoire de Physique des Matériaux et des Nanomatériaux Appliquée a` l'Environnement, Faculté des Sciences de Gabès Cité Erriadh, Université de Gabès, 6079 Gabès, Tunisia
⁵IM2NP, CNRS, Faculté des Sciences de Saint-Jérôme, Université d'Aix-Marseille, Case 142, 13397 Marseille, France
⁶Institut Néel, CNRS Université J. Fourier, B. P. 166, 38042 Grenoble, France

Structural properties:

X-ray density (ρ_{X-ray}) of the samples was calculated by considering that a basic unite cell of the cubic spinel structure contains eight ions, using the following equation:¹

$$\rho_{X-ray} = \frac{8.M}{N_{A.a}3} S1$$

where M is the molecular weight of each compound, N_A is Avogadro's number, a is the ascalculated lattice parameter converted in cm units and 8 represents the number of molecules in a unit cell ofspinel lattice.

The bulk density ρ_{th} estimated using the following relation:¹

$$\rho_{th} = \frac{m}{\pi . r^2 . h} S2$$

where h is the thickness of the pellet, r is the radius, and m is the mass of pellet .

The apparent porosity, P, in each sample was calculated using the following equation:¹

$$P(\%) = \frac{\rho_{X - ray} - \rho_{th}}{\rho_{X - ray}} \times 100 \text{ ss}$$

Assuming all the particles to be spherical, the specific surface area was calculated from the relation:²

$$S = \frac{6000}{D_{SC}.\rho_{X-ray}} \quad S4$$

where the constant 6000 is called form factor for spherical particles, D_{SC} is the diameter of the particle and " ρ_{X-ray} " is the X-ray density.

The theoretical lattice parameter (a_{th}) can be calculated using the following equation:³

$$a_{th} = \frac{8 \left[(r_A + r_o) + \sqrt{3} (r_B + r_o) \right]}{3\sqrt{3}} S5$$

Where, $r_A = \sum_i C_i r_i$, $r_B = \frac{1}{2} \sum_i C_i r_i$ are the average ionic radii per molecule for the respective A and B-sites; here, C_i is the concentration of the element i with ionic radius r_i on a particular site.

The oxygen positional parameter (u) can be determined using the relations:³

$$u = \left\lfloor \left(r_A + r_o \right) \frac{1}{a\sqrt{3}} + 0.25 \right\rfloor S6$$

The tetrahedral and octahedral bond lengths (d_{AE}) and (d_{BE}) , tetrahedral edge (d_{AL}) , shared and unshared octahedral edge (d_{BL}) and (d_{BEu}) , the distance between magnetic ions (i.e. hopping lengths) of A-site (L_A) and of B-site (L_B) can be evaluated by:⁴

$$d_{AE} = a\sqrt{2}\left(2u - \frac{1}{2}\right) \quad S7$$
$$d_{AL} = a\sqrt{3}\left(u - \frac{1}{4}\right) \qquad S8$$
$$d_{BL} = a\sqrt{3(u_{-})^{2} - \frac{11}{4}u + \frac{43}{64}} \qquad S9$$
$$d_{BEu} = a\sqrt{4(u)^{2} - 3u_{-} + \frac{11}{16}} \qquad S10$$

$$d_{BE} = a\sqrt{2}(1-2u) \quad S11$$
$$L_A = \frac{a\sqrt{3}}{4} S12$$
$$L_B = \frac{a\sqrt{2}}{4} S13$$

where a is the lattice parameter experimental.

Fig. S2 shows the interionic distances and bond angles between ions of spinel ferrites. The bond lengths and bond angles between the cations are calculated by the following relations:⁵

Me-O distances

$$p = a\left(\frac{5}{8} - u\right) \quad S14 \quad , q = a\sqrt{3}\left(u - 0.25\right) \quad S15 \quad , r = a\sqrt{11}\left(u - 0.25\right) \quad S16 \quad , s = a\sqrt{3}\left(\frac{1}{3}u + \frac{1}{8}\right) \quad S17$$

Me-Me distances

$$b = \frac{a\sqrt{2}}{4} S18 \quad c = \frac{a\sqrt{11}}{8} S19 \quad d = \frac{a\sqrt{3}}{4} S20 \quad e = \frac{3a\sqrt{3}}{8} S21 \quad f = \frac{a\sqrt{6}}{4} S22$$

Bond angles

$$\cos(\theta_{1}) = \frac{p^{2} + q^{2} - c^{2}}{2pq} \quad S23 \quad \cos(\theta_{2}) = \frac{p^{2} + r^{2} - e^{2}}{2pr} \quad S24 \quad \cos(\theta_{3}) = \frac{p^{2} - b^{2}}{2p^{2}} \quad S25$$
$$\cos(\theta_{4}) = \frac{p^{2} + s^{2} - f^{2}}{2ps} \quad S26 \quad \cos(\theta_{5}) = \frac{r^{2} + q^{2} - d^{2}}{2rq} \quad S27$$

Fig. S1 Lattice constants as function of the Nelson-Riley function $F(\theta)$ for all samples

Fig. S2 The interionic distances and bond angles between ions of spinel ferrites

Table S1 Lattice constants (a_{exp} , a_0 , a_R and a_{th}), unit cell volume (V), Rietveld refinement parameters, specific surface area (S), X-ray density (ρ_{X-ray}), apparent density (ρ_{exp}), porosity (P), hopping length (L_A and L_B), mean ionic radii (r_A and r_B), oxygen positional parameter (u) tetrahedral bond length (d_{AE}), octahedral bond length (d_{BE}), tetrahedral edge (d_{AL}), sharedoctahedral edge (d_{BL}) and unshared octahedral edge (d_{BEu}) of NZFAO samples.

Parameter	Ni600	Ni800	Ni900	Ni1050	Ni1200
a _{exp} (Å)	8.368	8.338	8.325	8.307	8.278
a ₀ (Å)	8.372	8.353	8.347	8.334	8.311
a _R (Å)	8.372	8.347	8.334	8.334	8.311
a _{th} (Å)	8.354	8.352	8.350	8.348	8.341
V (Å ³)	586.063	579.782	577.1315	573.294	567.385
χ^2	2.49	2.10	1.29	2.07	3.00
R _P (%)	20.9	14.7	24.9	22.0	51.8
R _{wp} (%)	13.1	8.45	11.1	10.4	21.8
R _e (%)	8.26	5.82	9.71	7.23	12.6
S (m ² /g)	69.81	48.14	39.56	26.72	22.29
$\rho_{x-ray}(g.cm^{-3})$	5.046	5.100	5.124	5.158	5.212
$ ho_{exp}$ (g.cm ⁻³)	3.234	3.284	3.334	3.358	3.408
P (%)	35.904	35.615	34.938	34.889	34.605
r _A (Å)	0.6668	0.6569	0.6492	0.6404	0.6360
r _B (Å)	0.6341	0.6390	0.6429	0.6473	0.6495
U	0.3884	0.3882	0.3879	0.3876	0.3874
L _A (Å)	3.625	3.617	3.614	3.609	3.594
L _B (Å)	2.960	2.953	2.951	2.946	2.934
d _{AE} (Å)	3.275	3.259	3.247	3.233	3.225
d _{BE} (Å)	2.641	2.636	2.639	2.640	2.643
d _{AL} (Å)	2.006	1.995	1.998	1.979	1.975
d _{BL} (Å)	1.986	1.980	1.979	1.997	1.977
d _{BEu} (Å)	2.967	2.956	2.951	2.944	2.941

Parameter	Ni600	Ni800	Ni900	Ni1050	Ni1200
p (Å)	1.9798	1.9744	1.9738	1.9721	1.9720
q (Å)	2.0060	1.9958	1.9884	1.9798	1.9752
r (Å)	3.8410	3.8217	3.8075	3.7910	3.7823
s (Å)	3.6881	3.6740	3.6668	3.6574	3.6534
b (Å)	2.9585	2.9479	2.9433	2.9369	2.9344
c (Å)	3.4691	3.4567	3.4513	3,4439	3.4409
d (Å)	3.6234	3.6104	3.6048	3.5970	3.5940
e (Å)	5.4351	5.4156	5.4072	5.3955	5.3910
f (Å)	5.1243	5.1059	5.0980	5.0869	5.0826
θ ₁ (°)	121.00	121.07	121.16	121.25	121.32
θ ₂ (°)	135.61	135.83	136.18	136.52	136.76
θ ₃ (°)	128.06	127.92	127.72	127.5	127.38
θ ₄ (°)	126.74	126.71	126.68	126.64	126.62
θ ₅ (°)	68.49	68.65	68.87	69.1	69.26
D _{SC} (nm)	17	24.5	29.8	43.9	52.2
D _{SEM} (nm)	13.6	22.28	37.62	180	4620
Cation distribution	$\begin{array}{l} (Zn_{0.4}Al_{0.12}Fe_{0.48}) \\ [Ni_{0.6}Al_{0.38}Fe_{1.02}] \end{array}$	(Zn _{0.4} Al _{0.21} Fe _{0.39}) [Ni _{0.6} Al _{0.29} Fe _{1.11}]	$(Zn_{0.4}Al_{0.28}Fe_{0.32})$ $[Ni_{0.6}Al_{0.22}Fe_{1.18}]$	$(Zn_{0.4}Al_{0.36}Fe_{0.24})$ $[Ni_{0.6}Al_{0.14}Fe_{1.26}]$	(Zn _{0.4} Al _{04.} Fe _{0.2}) [Ni _{0.6} Al _{0.1} Fe _{1.3}]

Table S2 Interatomic distance, bond angles, crystallite size observed from XRD (D_{SC}) and particle size determined from SEM (D_{SEM}), cation distribution of NZFAO samples

Fig. S3 EDS analysis of Ni600, Ni900 and Ni1200 samples

Fig. S4 Deconvoluted Raman spectra at 300 K of NZFAO samples annealed at different temperature fitted with the Lorentzian function.

Sample	Raman band position (cm ⁻¹)						Force contract (NA	onstants /m)
	A1g ⁽¹⁾	A1g ⁽²⁾	F2g ⁽³⁾	F2g ⁽²⁾	Eg	F2g ⁽¹⁾	F _T	Fo
Ni600	690.22	650.15	555.69	481.04	327.94	189.76	203.95	116.94
Ni800	691.54	651.36	493.52	468.38	330.83	191.33	195.29	122.03
Ni900	696.80	656.13	469.11	469.11	330.46	192.34	190.81	124.09
Ni1050	697.893	657.04	560.49	471.39	328.33	192.96	182.86	125.14
Ni1200	703.90	663.86	563.63	477.27	333.57		181.67	130.52

Table S3 Raman band position and force constants of the tetrahedral and octahedral sites of different samples

Table S4 Band position (υ), threshold energy (E_{th}), force constant (K), elastic parameters and Debye temperature (θ) of the annealed NZAFO samples determined from FTIR spectra recorded at 300 K.

Parameter	Ni600	Ni800	Ni900	Ni1050	Ni1200
v _A (cm ⁻¹)	557.8	565.1	571.7	576.2	581.4
v _B (cm ⁻¹)	403.6	406.7	407.5	407.5	409.8
v _{av} (cm ⁻¹)	480.7	485.9	489.6	491.8	495.6
v _{th} (cm ⁻¹)	670.1	712.6	718.4	719	724.7
$E_{th} \times 10^{-2} \text{ (eV)}$	8.28	8.80	8.87	8.88	8.95
K _T (N/m)	133.2	130.0	128.4	124.6	123.9
K ₀ (N/m)	177.1	184.4	188.7	192.8	197.0
K _{av} (N/m)	155.1	157.2	158.5	158.7	160.4
C ₁₁ (GPa))	185.3	188.5	190.4	191.0	193.7
B (GPa)	185.3	188.5	190.4	191.0	193.7
v _l (m/s)	6059.8	6079.5	6095.7	6085.2	6096.2
v _s (m/s)	3498.6	3510.0	3519.3	3513.3	3519.6
v _m (m/s)	3884.1	3896.7	3907.0	3900.4	3907.4
G (GPa)	61.7	62.8	63.4	63.7	64.5
σ	0.35	0.35	0.35	0.35	0.35
E (GPa)	166.6	169.6	171.2	172.0	174.1
$\theta_{\rm D}({\rm K})$	691.2	698.7	704	707.2	712.7
θ _E (K)	529.0	532.6	534.9	535.1	538

Model	Parameter	Ni600	Ni800	Ni900	Ni1050	Ni1200
	σ ₀	0.478	0.477	0.474	0.474	0.472
	G ₀ (GPa)	153.6	154.5	151.8	152.2	152.4
	E ₀ (GPa)	526.4	526.2	509.7	510.6	508.2
	v_{s0} (m/s)	3947.2	3982.8	3983.2	3975.6	3978.5
	v ₁₀ (m/s)	11023.9	10995.1	10875.8	10846.5	10804.6
Elastic theory	v _{m0} (m/s)	4484.4	4523.6	4522.9	4514.2	4516.9
	Cl	1.2542	1.2553	1.2580	1.2582	1.2593
	Ce	1.9038	1.9029	1.9009	1.9008	1.8999
	C _σ	0.75	0.75	0.75	0.75	0.75
	A ₁	1.7092	1.7169	1.7349	1.7362	1.7438
	A ₂	169.695	174.299	180.486	180.960	185.75
	A ₃	-46613.7	-48161.5	-48866,5	-49234,6	-50451,23
Ledbetter and Datta model	E ₀ (GPa)	357.1	354.0	352.2	353.4	355.6
	G ₀ (GPa)	125.6	124.2	123.7	124.16	124.97
	B ₀ (GPa)	760.4	790.2	769.9	768.4	769.7
	B ₀ / G ₀	6.05	6.36	6.22	6.18	6.37

 Table S5 Elastic data corrected to zero porosity for the annealed NZFAO samples.

Table S6 Thermodynamic parameters (lattice energy (U_L) ,shortest wave (σ_{max}) , high frequency cutoff (f_{max}) , approximate mean elastic wave (v_{max}) , molar heat capacity at constant volume (Cv), Debyetemperature (θ_I) ,and minimum lattice thermal conductivity (Π_{min}))of the annealed NZAFO samples.

Parameter	Ni600	Ni800	Ni900	Ni1050	Ni1200
U _L (eV)	-139.1	-141.5	-141.5	-141.0	-141.1
$\sigma_{\rm max} \times 10^7 ({\rm m}^{-1})$	2.473	2.482	2.486	2.491	2.500
f _{max} × 10 ¹¹ (s ⁻¹)	1.580	1.598	1.610	1.619	1.633
ν _{max} (cm ⁻¹)	528.7	534.6	538.6	541.7	546.4
θ ₁ (K)	760.2	768.8	774.5	779.0	785.7
C _V (J.mol ⁻¹ .K ⁻¹)	104.9	103.7	102.9	102.4	101.5
$\Pi_{\min} (W.cm^{-1}.s^{-1})$	1.041	1.050	1.054	1.057	1.061

Table S7Energy band gap (Eg), Urbach energy (E_u), refractive index (n_o), and high-frequency dielectric constant (ϵ_{α}) of Ni-Zn-Al ferrite samples.

Sample	Eg	Eu	no	εα
Ni600	4.5	0.7	2.19	4.80
Ni800	3.75	0.25	2.29	5.26
Ni900	3.67	0.22	2.30	5.32
Ni1050	3.56	0.18	2.32	5.40
Ni1200	3.1	0.11	2.39	5.73

Fig. S5Room temperature hysteresis loops of NZAFO ferrites annealed at 600,800, 900, 1050 and 1200 °C.

Parameter	Ni600	Ni800	Ni900	Ni1050	Ni1200
Δ_{Hpp} (Oe)	813.52	767.72	671.95	547.84	457.6
H _r (Oe)	2405.02	2670.09	2757.15	2852.04	2993.43
G	2.762	2.488	2.409	2.329	2.219
T ₂ .10 ⁻¹¹ (s)	2.919	3.434	4.052	5.141	6.459
T ₁ .10 ⁻¹² (s)	2.510	2.133	1.808	1.425	1.134
R ₁ .10 ¹¹ (s ⁻¹)	3.983	4.686	5.528	7.014	8.814
R ₂ .10 ¹⁰ (s-1)	3.425	2.911	2.467	1.945	1.548
R ₂ /R ₁	0.085	0.062	0.044	0.027	0.017

Table S8 ESR parameters of the annealed NZAFO samples at 300 K

Table S9 Molar volume (V_{mat}), saturation magnetization (Ms) in (A/m) at 300 K, average particle size (D_{SEM}) obtained from SEM images, andtransverse relaxivity (r_2) of the NZAFO annealed at 600, 800, and 900 °C samples

Sample	Parameter						
	V _{mat} .10 ⁻⁵ (m ³ /mol)	M _s (A/m)	D _{SEM} .10 ⁻⁸ (m)	r ₂ (L/s.mmol)			
Ni600	4.4116	109200	1.36	1.37977			
Ni800	4.36442	220400	2.228	14.92308			
Ni900	4.34446	259140	3.762	58.54921			

Fig. S6Ln(p) vs1000/T for NZAFO ferrites annealed at 600, 900 and 1200 °C.

Reference

11. H. Gul, F. Amin, A. Z. Abbasi, M.Anis-ur-Rehman, F. A. Maqsood, Scr. Mater, 2007, **56**, 497–500. 2L. Aswaghosh, D. Manoharanb and N. Victor Jayaa, Phys. Chem. Chem. Phys, 2016, **18**, 5995-6004.

3 K.E. Siokafus, J.M. Wills, N.W. Grimes, J. Am. Ceram. Soc, 1999, 82, 3279.

4G. Kumar, R. K. Kotnala, J. Shah, V. Kumar, A. Kumar, P. Dhimana and M. Singhd, Phys. Chem. Chem. Phys, 2017, **19**, 16669-16680.

5 W .Zhang, A. Sun, X. Pan, Y. Han, X. Zhao, L. Yu, Z. Zuo and N. Suo, J. Magn. Magn. Mater, 2020, **506** 166623.