Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supporting Information

 $SnO-Sn_3O_4$ heterostructural gas sensor with high response and selectivity to parts-perbillion-level NO_2 at low operating temperature

Wenwen Zeng^a, Yingzhi Liu^a, Guoliang Chen^a, Haoran Zhan*a, Jun Mei*a, Nan Luo^a, Zhoukun He^b, Changyu Tang^a

^a Chengdu Green Energy and Green Manufacturing Technology R&D Center,
Chengdu Development Center of Science and Technology, China Academy of
Engineering Physics, Chengdu, 610200, China.

^b Institute for Advanced Study, Chengdu University, Chengdu, 610106, China

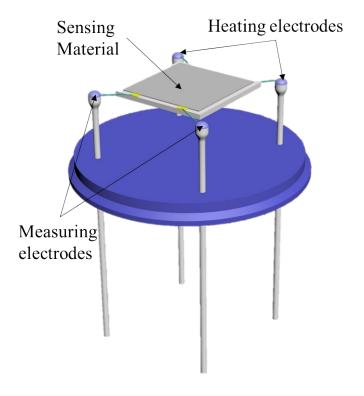
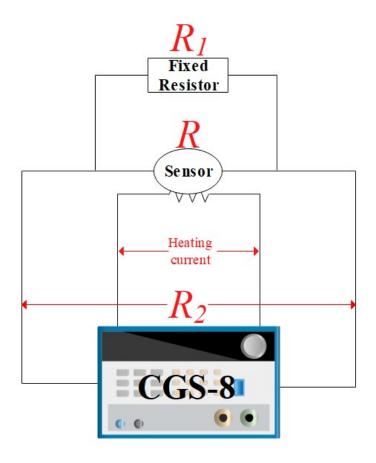



Figure S1. Schematic diagram of the gas sensors used in this study.

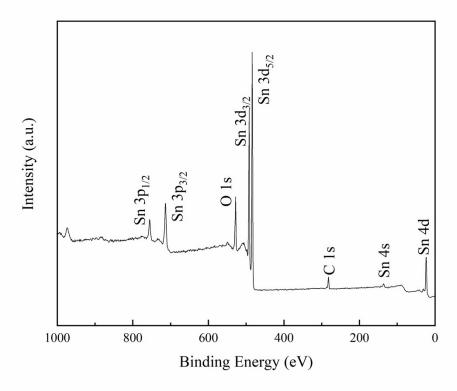
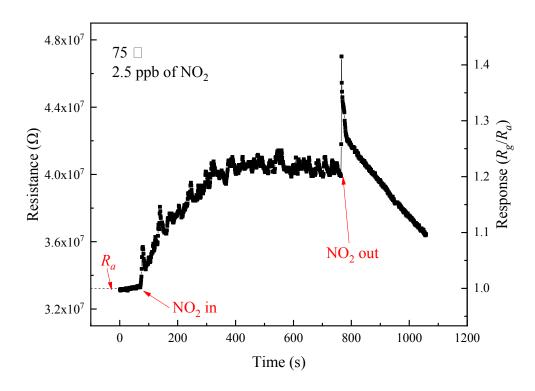


Figure S2. Schematic diagram of the measuring circuit used in the tests.


Because of the high resistance of the sensors made by SnO-Sn₃O₄ heterostructure, their resistances might exceed the measuring range of the test system (500 M Ω) when exposed to high concentrations of NO₂. Hence the circuit above was used to enlarge the mearing range. In Figure S2, R_I was the resistance value of a fixed resistor (a resistor with 470M Ω nominal value was used here), which was parallel connected with the gas sensor. R was the resistance of the gas sensor, which was the value we ultimately need. R_2 was the resistance value measured by CGS-8 intelligent gas sensing analysis system. For these three factors,

$$\frac{1}{R_1} + \frac{1}{R} = \frac{1}{R_2}$$

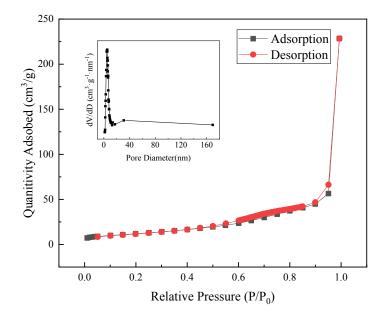

$$R = \frac{R_1 * R_2}{R_1 - R_2}$$

Figure S3. General scan X-ray photo electron spectra of as-prepared sample.

Figure S4. Resistance and response curve of SnO-Sn₃O₄ heterostructure when exposed to 2.5 ppb NO₂ at 75 °C.

 $\label{eq:Figure S5.} \textbf{N}_2 \ adsorption-desorption \ isotherm \ of the \ SnO-Sn_3O_4 \ heterostructure \ and \ corresponding pore size distribution.$