Support information for

Selective Hydrogenation of Nitroaromatics to N-arylhydroxylamines in a

Micro-Packed Bed Reactor with Passivated Catalyst

Feng Xu,^a Jian-Li Chen,^a Zhi-Jiang Jiang,^c Peng-Fei Cheng,^a Zhi-Qun Yu,^{*,a} Wei-KeSu^{*,a,b}

- a) National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- b) Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- c) School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo, 315100, People's Republic of China

Table of Content:

1.	Supplementary data for passivated catalysts characterization	2
2.	Pre-optimization in batch reactor	4
3.	Product data and Copies of Spectra	5
Refer	ence:	14

1. Supplementary data for passivated catalysts characterization

a) Powder X-ray diffraction data for passivated catalysts

Figure S1. XRD patterns for passivated catalysts

b) BET data for passivated catalysts

Figure S2. BET patterns of passivated catalysts (a is DA80; b is DA200; c is DA400; d is DA400r)

	Table S1. Elementary analysis									
NO	catalyst	Weight	N [%]	C [%]	H [%]	S [%]	N area	C area	H area	S area
1		2.9430	0.46	5.31	1.571	2.779	317	2049	551	897
2	DA80	3.2090	0.43	5.07	1.495	2.726	332	2228	664	961
3		2.8460	0.48	5.44	1.581	2.792	323	2008	470	871
4		3.2830	0.29	4,74	1.656	2.406	216	2030	1085	866
5	DA200	3.4270	0.37	4.60	1.605	2.409	285	2082	1128	906
6		3.8450	0.26	4.37	1.576	2.383	226	2387	1500	1008
7		2.2930	0.15	5.62	2.021	2.154	75	1257	558	532
8	DA400	2.1750	0.21	5.87	2.058	2.169	104	1223	455	507
9		2.2230	0.15	5.73	2.023	2.082	75	1212	468	497
10		2.3790	0.57	5.78	2.035	2.538	324	1506	694	656
11	DA400r	3.8680	0.53	4.19	1.776	2.230	582	2219	2045	948
12		3.5300	0.53	4.48	1.872	2.309	511	2096	1869	894

c) Elementary analysis data for passivated catalysts

d) EDS data for passivated catalysts

Figure S3. EDS spectra of different catalysts: DA80(a), DA200(b), DA400(c), DA400r(d)

2. Pre-optimization in batch reactor

Before the continuous-flow optimization, a pilot optimization was conducted in autoclave (Table S2). Firstly, different solvent was examined under this standard condition, showing the THF as the optimal choice for this transformation. Although the previous reports indicated the product selectivity may related with the solvent's dielectric constant, our results didn't show the similar tendency. This may be due to the higher rate of dehalogenation or hydrogenation of other functional groups.

The temperature examination showed the transformation performed better at -7 °C. The higher temperature resulted in catalyst activation, whose selectivity dropped dramatically. The results indicate the selectivity reducing with increasing the reaction temperature.

The amount of catalyst loading also have some influence on the outcomes, where higher loading provided a much higher conversion but poor selectivity, which may due to the more catalytic opportunity in the system.

Finally, the reaction time was examined. As expected, during the reaction process, the hydroxylamine, as the intermediate, changed with reaction developing. And the optimal reaction time was found to be 32 hrs, rendering the conversion over 99% with a selectivity of 97%.

	cat.	Solvent	temp.	time	%Y	lield		%Conv.
entry	Loadin g(%)		°C	hrs	%HA-1	%AM-1	%Select.	
1	5	THF	-8	29	78.1%	8.9%	89.8%	87.0%
2	5	DCM	-8	29	44.1%	55.9%	44.1%	100.0%
3	5	EtOAc	-8	29	56.1%	41.8%	57.3%	97.9%
4	5	EtOH:THF(1:9)	-8	29	9.8%	90.2%	9.8%	100.0%
5	5	1,4-dioxiane	-8	29	0.0%	100.0%	0.0%	100.0%
6	5	THF	-10	27	12.5%	2.4%	83.9%	14.9%
7	5	THF	-7	27	80.5%	2.7%	96.8%	83.1%
8	5	THF	-5	27	79.8%	20.2%	79.8%	100.0%
9	5	THF	0	27	65.3%	33.5%	66.1%	98.7%
10	3	THF	-7	26	28.4%	0.4%	98.7%	28.8%
11	5	THF	-7	26	73.5%	4.8%	93.9%	78.3%
12	7	THF	-7	26	82.5%	12.9%	86.5%	95.4%
13	10	THF	-7	26	66.3%	30.9%	68.2%	97.2%
14	5	THF	-7	15	30.4%	1.1%	96.5%	31.6%
15	5	THF	-7	24	54.6%	5.3%	91.1%	59.9%
16	5	THF	-7	32	96.8%	3.0%	97.0%	99.7%
17	5	THF	-7	48	23.2%	76.8%	23.2%	100.0%
18	5	THF	-7	52	0.0%	100.0%	0.0%	100.0%

Table S2. Pre-optimization in autoclave

3. Product data and Copies of Spectra

Scheme S1. Substrates scope of nitroaromatics.

N-(2-(((1-(4-chlorophenyl)-1H-pyrazol-3-yl)oxy)methyl)phenyl)hydroxylamine. (HA-1). Light yellow solid, mp:98-103 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.51-8.37 (m, 2H), 8.19 (s, 1H), 7.86-7.76 (m, 2H), 7.60-7.50 (m, 2H), 7.37-7.16 (m, 3H), 6.90-6.78 (m, 1H), 6.12 (d, *J* = 2.7 Hz, 1H), 5.23 (s, 2H); HR-MS[ESI]: C₁₆H₁₄ClN₃O₂ for [M+Na]⁺, calculated 338.0673, found 338.0668.

Methyl(2-(((1-(4-chlorophenyl)-1H-pyrazol-3-yl)oxy)methyl)phenyl)(hydroxy)carbamate. (HA-1-CO₂Me). White solid (99.5% yield), mp: 130-132 °C(ref.^[1] mp: 131-132 °C) ¹H NMR (400 MHz, DMSO- d_6) δ 10.42 (s, 1H), 8.41 (d, J = 2.7 Hz, 1H), 7.83-7.76 (m, 2H), 7.60 (dd, J = 6.7, 2.9 Hz, 1H), 7.56-7.51 (m, 2H), 7.40 (dd, J = 5.1, 3.4 Hz, 3H), 6.11 (d, J = 2.6 Hz, 1H), 5.30 (s, 2H), 3.70 (s, 3H). HR-MS [ESI]: C₁₈H₁₆ClN₃O₄ for [M+Na]⁺, calculated 396.0727, found 396.0730.

Methyl (2-chlorophenyl)(hydroxy) carbamate (HA-2-CO₂Me). Yellow solid (83.5% yield), mp:103-105 °C; FT-IR (*v*_{max}/cm⁻¹) 771, 1053, 1133, 1445, 1715, 3320; ¹H NMR (400 MHz, Chloroform-d) δ 8.79 (s, 1H), 7.57-7.44 (m, 2H), 7.41-7.28 (m, 2H), 3.81 (s, 3H);¹³C NMR (126 MHz, CDCl3) δ 157.18, 138.51, 132.58, 130.14, 129.98, 129.57, 127.62, 53.94; HR-MS(ESI) for [C₈H₈ClNO₃+Na]⁺, calculated 224.0091, found 224.0092.

Methyl (3-chlorophenyl)(hydroxy)carbamate(HA-3-CO₂Me). Yellow solid, (79.2% yield), mp:78-81 °C; FT-IR (v_{max} /cm⁻¹) 726, 781, 869, 1053, 1592, 1682, 3196.¹H NMR (400 MHz, DMSO-d6) δ 10.58 (s, 1H), 7.62 (t, J = 2.1 Hz, 1H), 7.57 - 7.50 (m, 1H), 7.41 (t, J = 8.2 Hz, 1H), 7.24 - 7.17 (m, 1H), 3.79 (s, 3H).¹³C NMR (126 MHz, DMSO) δ 154.93, 143.97, 133.30, 130.58, 124.13, 119.38, 118.28, 53.54. HR-MS[ESI]: C₈H₈ClNO₃ for [M+Na]⁺, calculated 224.0091, found 224.0082.

Methyl(*4-chlorophenyl*)(*hydroxy*)*carbamate* (HA-4-CO₂Me). Light yellow solid, (87.47% yield), mp:63-65 °C (lit.^[2] mp:64-65 °C); FT-IR (*v*_{max}/cm⁻¹) 831, 1046, 1490, 1668, 3251; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.52 (s, 1H), 7.61-7.54 (m, 2H), 7.48-7.41 (m, 2H), 3.78 (s, 3H); HR-MS[ESI]: C₈H₈ClNO₃ for [M+Na]⁺, calculated 224.0091, found 224.0085.

Methyl(*4-bromophenyl*)(*hydroxy*)*carbamate* (HA-5-CO₂Me). Light yellow solid, (88.36% yield), mp:90-92 °C(lit.^[2], mp:90-92 °C); FT-IR (*v*_{max}/cm⁻¹) 832, 1004, 1446, 1682, 3445; ¹H NMR (400 MHz, DMSO-d6) δ 10.52 (s, 1H), 7.60-7.54 (m, 2H), 7.54-7.48 (m, 2H), 3.77 (s, 3H); HR-MS[ESI]: C₈H₈BrNO₃ for [M+Na]⁺, calculated 267.9586, found 267.9572.

Methyl(4-(*benzyloxy*)*phenyl*)(*hydroxy*)*carbamate* (HA-6-CO₂Me). Red solid, (81.90% yield), mp: 87-90 °C; FT-IR (*v*_{max}/cm⁻¹) 699, 748, 838, 1120,1243, 1703, 3224; ¹H NMR (400 MHz, DMSO-d6) δ 9.44 (s, 1H), 7.47-7.34 (m, 7H), 7.01-6.93 (m, 2H), 5.07 (s, 2H), 3.66 (s, 3H); ¹³C NMR (126 MHz, DMSO) δ156.21, 155.57, 137.48, 136.08, 128.89, 128.28, 128.11, 123.97, 115.05, 69.85, 53.13; HR-MS[ESI]: C₁₅H₁₅NO₄ for [M+H]⁺, calculated 274.1961, found 274.1948.

Methyl4-(hydroxy(methoxycarbonyl)amino)benzoate (HA-7-CO₂Me). Yellow solid, (34.71% yield), mp:100-103 °C; FT-IR (*v*_{max}/cm⁻¹) 853, 1385, 1726, 1737, 3225; ¹H NMR (400 MHz, DMSO-d6) δ 10.65 (s, 1H), 8.02-7.94 (m, 2H), 7.79-7.69 (m, 2H), 3.86 (s, 3H), 3.81 (s, 3H); ¹³C NMR (126 MHz, DMSO) δ 166.19, 154.74, 146.53, 130.28, 124.77, 118.57, 53.62, 52.37; HR-MS[ESI]: C₁₀H₁₁NO₅ for [M+Na]⁺, calculated 248.0535, found 248.0498.

Methyl(*4-acetylphenyl*)(*hydroxy*)*carbamate* (HA-8-CO₂Me). Yellow solid, (89.46% yield), mp:141-144 °C; FT-IR (v_{max}/cm^{-1}) 849, 1599, 1660, 1715, 3175; ¹H NMR (400 MHz, DMSO-d6) δ 10.64 (s, 1H), 7.98 (d, J = 8.9 Hz, 2H), 7.72 (d, J = 8.9 Hz, 2H), 3.81 (s, 3H), 2.57 (s, 3H); ¹³C NMR (126 MHz, DMSO) δ 197.00, 154.75, 146.40, 132.42, 129.44, 118.48, 53.63, 26.94; HR-MS[ESI]: C₁₀H₁₁NO₄ for [M+Na]⁺, calculated 232.0566, found 232.0555.

Figure S4 HPLC spectra for the outcoming reaction (The only signal from HA-1)

Figure S5 ¹H-NMR spectra for HA-1

Figure S7 ¹H-NMR spectra for HA-2-CO₂Me

Figure S13 ¹H-NMR spectra for HA-6-CO₂Me

Figure S15 ¹H-NMR spectra for HA-7-CO₂Me

Figure S18 ¹³C-NMR spectra for HA-8-CO₂Me

Reference:

- 1. H. J. Ma, Q. L. Cao, Y. F. Ma, J. P. Ni. Agrochemicals, 2013, 52(6): 408-410.
- 2. A. Porzelle, M. D. Woodrow, N. C. O. Tomkinson. Org. Lett., 2010, 12(7): 1492-1495.