Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Agar-Reduced Graphene Oxide Selectively Adsorbs Organic Dyes and Strengthens Double-Network Hydrogels

Tang Tang,^a Karel Goossens,^{a,d} Sherilyn J. Lu,^{a,b} Dongli Meng^a and Christopher W. Bielawski^{*a,b,c}

^a Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919 (Republic of Korea)

^b Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919 (Republic of Korea)

^c Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919 (Republic of Korea)

^d Current address: Johnson & Johnson, Janssen R&D, Turnhoutseweg 30, B-2340 Beer se, Belgium.

* Correspondence: bielawski@unist.ac.kr; Tel.: +82-52-217-2952.

Figure S1. AFM image and profile data recorded for graphene oxide.

Figure S2. (a) UV–vis absorption spectra that were recorded for a 2.0 mg mL⁻¹ aqueous dispersion of agar after being heated to 95 °C for 12 h (blue); a 0.2 mg mL⁻¹ aqueous dispersion of GO (red); a 0.2 mg mL⁻¹ aqueous dispersion of GO with agar (agar/GO = 10 : 1 w/w) after being heated to 95 °C for 12 h (green). (b) UV–vis absorption spectra that were recorded for a 0.2 mg mL⁻¹ aqueous dispersion of GO and NH₃ (aq.) (pH = 8 – 9) after being heated to 95 °C for 3 h (blue); a 0.2 mg mL⁻¹ aqueous dispersion of GO, agar (agar/GO = 10 : 1 w/w) after being heated to 95 °C for 3 h (blue); a 0.2 mg mL⁻¹ aqueous dispersion of GO and NH₃ (aq.) (pH = 8 – 9) after being heated to 95 °C for 3 h (blue); a 0.2 mg mL⁻¹ aqueous dispersion of GO, agar (agar/GO = 10 : 1 w/w) after being heated to 95 °C for 3 h (blue); a 0.2 mg mL⁻¹ aqueous dispersion of GO, agar (agar/GO = 10 : 1 w/w) after being heated to 95 °C for 3 h (blue); a 0.2 mg mL⁻¹ aqueous dispersion of GO, agar (agar/GO = 10 : 1 w/w) after being heated to 95 °C for 3 h (blue); a 0.2 mg mL⁻¹ aqueous dispersion of GO, agar (agar/GO = 10 : 1 w/w) after being heated to 95 °C for 3 h (blue); a 0.2 mg mL⁻¹ aqueous dispersion of GO, agar (agar/GO = 10 : 1 w/w) after being heated to 95 °C for 3 h (blue); a 0.2 mg mL⁻¹ aqueous dispersion of GO, agar (agar/GO = 10 : 1 w/w) after being heated to 95 °C for 3 h (blue); a 0.2 mg mL⁻¹ aqueous dispersion of GO, agar (agar/GO = 10 : 1 w/w) after being heated to 95 °C for 3 h (blue); a 0.2 mg mL⁻¹ aqueous dispersion of GO, agar (agar/GO = 10 : 1 w/w) after being heated to 95 °C for 3 h (blue); a 0.2 mg mL⁻¹ aqueous dispersion of GO, agar (agar/GO = 10 : 1 w/w) after being heated to 95 °C for 3 h (blue); a 0.2 mg mL⁻¹ aqueous dispersion dispersion of GO, agar (agar/GO = 10 : 1 w/w) after being heated to 95 °C for 3 h (blue); a 0.2 mg mL⁻¹ aqueous dispersion dispersion

1 w/w) and NH₃ (aq.) (pH = 8 - 9) after being heated to 95 °C for 3 h (red). (c) UV-vis absorption spectra that were recorded over time (indicated) for a 0.2 mg mL⁻¹ aqueous dispersion of GO, agar (agar/GO = 10 : 1 w/w) and NH₃ (aq.) (pH = 8 - 9) that was kept at 95 °C. (d) Photographs of various suspensions and dispersions (indicated).

Figure S3. Photographs taken (left) after a film of GO was placed in water and (right) after the mixture was left standing for 1 day.

Figure S4. UV-vis spectra. (left) The selective adsorption of RhoB versus MO was demonstrated by soaking ArGO paper (1 mg) in an aqueous mixture of both dyes for 12 h $([RhoB]_0 = [MO]_0 = 1 \text{ mg } \text{L}^{-1}, 2 \text{ mL total volume})$. (right) The adsorption capacity was assessed by soaking ArGO paper (1 mg) in an aqueous solution of RhoB for 7 days ([RhoB]_0 = 20 mg L⁻¹, 2 mL total volume).

Figure S5. Swelling properties of an ArGO hydrogel and an agar hydrogel (indicated).

Figure S6. UV-vis absorption spectra that were recorded over time and photographs that were recorded over the sol–gel transition. Conditions: 1.0 mg mL⁻¹ aqueous dispersion of GO + NH₃ (aq.) (pH=8-9, mixed with (a) agar (agar/GO = 10 : 1 w/w), (b) agar (agar/GO = 5 : 1 w/w), (c) agar (agar/GO = 2 : 1 w/w) and (d) agar (agar/GO = 1 : 1 w/w). Each mixture was heated to 95 °C for the period indicated in the figure legends. Inset: photographs of the ArGO hydrogels that resulted from the reactions.

Figure S7. Raman spectra recorded for an ArGO film and an ArGO aerogel (indicated). Conditions: ArGO film, 0.2 mg mL⁻¹ aqueous dispersion GO + agar (agar/GO = 10:1 w/w) + NH₃ (aq.) (pH = 8-9), 95 °C for 3 h; ArGO gel, 1.0 mg mL⁻¹ aqueous dispersion GO + agar (agar/GO = 10:1 w/w) + NH₃ (aq.) (pH = 8-9), 95 °C for 3 h.

Figure S8. FT-IR spectra recorded for GO, agar and ArGO (indicated). Conditions: 1.0 mg mL⁻¹ aqueous dispersion GO + agar (agar/GO = 10:1 w/w) + NH₃ (aq.) (pH = 8-9), 95 °C for 3 h.

Figure S9. FT-IR spectra recorded for PAAm, Agar-PPAm DN gel and ArGO-PAAm DN aerogel (indicated). The gels were freeze-dried for 2 days and then analyzed. Conditions: PAAm, 0.1 mol% MBAA relative to AAm and 1 mol% APS relative to AAm, polymerization time: 7 h at 65 °C; Agar-PAAm DN hydrogel, Agar/AAm = 1: 9 w/w, 0.1 mol% MBAA relative to AAm and 1 mol% APS relative to AAm, polymerization time: 7 h at 65 °C; ArGO-PAAm DN hydrogel, ArGO/AAm =1: 9 w/w; 0.1 mol% MBAA relative to AAm and 1 mol% APS relative to AAm, polymerization time: 7 h at 65 °C; ArGO-PAAm DN hydrogel, ArGO/AAm =1: 9 w/w; 0.1 mol% MBAA relative to AAm and 1 mol% APS relative to AAm and 1 mol% APS relative to AAM.

Figure S10. Stress–strain curves that were recorded for an ArGO-PAAm DN hydrogel Conditions: ArGO/AAm = 1 : 9 w/w; 0.1 mol% MBAA relative to AAm and 1 mol% APS relative to AAm; polymerization time: 3.5 h at 65 °C; water content: 83 wt%.

Figure S11. Stress–strain curves that were recorded for an ArGO-PAAm DN hydrogel. Conditions: ArGO/AAm = 1 : 9 w/w, 0.1 mol% MBAA relative to AAm and 1 mol% APS relative to AAm, polymerization time: 7 h at 65 °C; water content: 83 wt%.

Figure S12. Stress–strain curves that were recorded for an ArGO-PAAm DN hydrogel. Conditions: ArGO/AAm = 1 : 9 w/w; 0.1 mol% MBAA relative to AAm and 1 mol% APS relative to AAm; polymerization time: 12 h at 65 °C; water content: 83 wt%.

Figure S13. Stress–strain curves that were recorded for an ArGO-PAAm DN hydrogel. Conditions: ArGO/AAm = 1 : 9 w/w, 0.06 mol% MBAA relative to AAm and 1 mol% APS relative to AAm, polymerization time: 7 h at 65 °C; water content: 83 wt%.

Figure S14. Stress–strain curves that were recorded for an ArGO-PAAm DN hydrogel. Conditions: ArGO/AAm = 1 : 9 w/w, 0.025 mol% MBAA relative to AAm and 1 mol% APS relative to AAm, polymerization time: 7 h at 65 °C; water content: 83 wt%.

Figure S15. Stress–strain curves that were recorded for an ArGO-PAAm DN hydrogel. Conditions: ArGO/AAm = 1 : 5 w/w, 0.1 mol% MBAA relative to AAm and 1 mol% APS relative to AAm, polymerization time: 7 h at 65 °C; water content: 89 wt%.

Figure S16. Stress–strain curves that were recorded for an PAAm SN hydrogel. Conditions: 0.1 mol% MBAA relative to AAm and 1 mol% APS relative to AAm, polymerization time: 7 h at 65 °C; water content: 83 wt%.

Figure S17. Stress–strain curves that were recorded for an Agar-PAAm DN hydrogel. Conditions: Agar/AAm = 1 : 9 w/w, 0.1 mol% MBAA relative to AAm and 1 mol% APS relative to AAm, polymerization time: 7 h at 65 °C; water content: 83 wt%.