Supplementary material

The effect of saccharides on equilibrium swelling of
thermo-responsive gels

A.D. Drozdov and J. deClaville Christiansen
Department of Materials and Production
Aalborg University
Fibigerstraede 16, Aalborg 9220, Denmark

1 Appendix A: Swelling in pure water

The specific Helmholtz free energy (per unit volume in the initial state) Ψ of a TR gel is given by Eq. (6). Combining Eqs. (1) and (6) to (8) and using Eq. (13), we find that

$$
\begin{equation*}
\Psi=\mu^{0} C_{\mathrm{f}}+k_{\mathrm{B}} T_{0} C_{\mathrm{f}}\left(\ln \frac{C_{\mathrm{f}} v}{1+C_{\mathrm{f}} v}+\frac{\chi}{1+C_{\mathrm{f}} v}\right)+\sum_{m=1}^{2} W_{m}\left(I_{\mathrm{e} 1}^{(m)}, I_{\mathrm{e} 2}^{(m)}, I_{\mathrm{e} 3}^{(m)}\right) . \tag{S-1}
\end{equation*}
$$

Differentiation of Eq. (S-1) with respect to time implies that

$$
\begin{align*}
\dot{W}= & {\left[\mu^{0}+k_{\mathrm{B}} T_{0}\left(\ln \frac{C_{\mathrm{f}} v}{1+C_{\mathrm{f}} v}+\frac{1}{1+C_{\mathrm{f}} v}+\frac{\chi}{\left(1+C_{\mathrm{f}} v\right)^{2}}\right)\right] \dot{C}_{\mathrm{f}} } \\
& +\sum_{m=1}^{2}\left(\frac{\partial W_{m}}{\partial I_{\mathrm{e} 1}^{(m)}} \dot{I}_{\mathrm{e} 1}^{(m)}+\frac{\partial W_{m}}{\partial I_{\mathrm{e} 2}^{(m)}} \dot{I}_{\mathrm{e} 2}^{(m)}+\frac{\partial W_{m}}{\partial I_{\mathrm{e} 3}^{(m)}} \dot{I}_{\mathrm{e} 3}^{(m)}\right. \tag{S-2}
\end{align*},
$$

the superscript dot stands for the derivative with respect to time t. The derivatives of the principal invariants $I_{\mathrm{e} 1}^{(m)}, I_{\mathrm{e} 2}^{(m)}, I_{\mathrm{e} 3}^{(m)}$ of the tensors $\mathbf{B}_{\mathrm{e}}^{(m)}(m=1,2)$ read

$$
\begin{equation*}
\dot{I}_{\mathrm{e} 1}^{(m)}=2 \mathbf{B}_{\mathrm{e}}^{(m)}: \mathbf{D}, \quad \dot{I}_{\mathrm{e} 2}^{(m)}=2\left(I_{\mathrm{e} 2}^{(m)} \mathbf{I}-I_{\mathrm{e} 3}^{(m)}\left(\mathbf{B}_{\mathrm{e}}^{(m)}\right)^{-1}\right): \mathbf{D}, \quad \dot{I}_{\mathrm{e} 3}^{(m)}=2 I_{\mathrm{e} 3}^{(m)} \mathbf{I}: \mathbf{D} \tag{S-3}
\end{equation*}
$$

where the colon denotes convolution,

$$
\begin{equation*}
\mathbf{L}=\dot{\mathbf{F}} \cdot \mathbf{F}^{-1} \tag{S-4}
\end{equation*}
$$

is the velocity gradient, and

$$
\begin{equation*}
\mathbf{D}=\frac{1}{2}\left(\mathbf{L}+\mathbf{L}^{\top}\right) \tag{S-5}
\end{equation*}
$$

is for the rate-of-strain tensor. It follows from Eqs. (S-2) and (S-3) that

$$
\begin{equation*}
\dot{W}=K \dot{C}_{\mathrm{f}}+2 \mathbf{K}: \mathbf{D} \tag{S-6}
\end{equation*}
$$

where

$$
\begin{align*}
K & =\mu^{0}+k_{\mathrm{B}} T_{0}\left[\ln \frac{C_{\mathrm{f}} v}{1+C_{\mathrm{f}} v}+\frac{1}{1+C_{\mathrm{f}} v}+\frac{\chi}{\left(1+C_{\mathrm{f}} v\right)^{2}}\right] \\
\mathbf{K} & =\sum_{m=1}^{2}\left[\frac{\partial W_{m}}{\partial I_{\mathrm{e} 1}^{(m)}} \mathbf{B}_{\mathrm{e}}^{(m)}-I_{\mathrm{e} 3}^{(m)} \frac{\partial W_{m}}{\partial I_{\mathrm{e} 2}^{(m)}}\left(\mathbf{B}_{\mathrm{e}}^{(m)}\right)^{-1}+\left(I_{\mathrm{e} 2}^{(m)} \frac{\partial W_{m}}{\partial I_{\mathrm{e} 2}}+I_{\mathrm{e} 3}^{(m)} \frac{\partial W_{m}}{\partial I_{\mathrm{e} 3}^{(m)}}\right) \mathbf{I}\right] . \tag{S-7}
\end{align*}
$$

To develop constitutive equations for a TR gel under isothermal deformation, we apply the free energy imbalance inequality

$$
\begin{equation*}
\dot{\Psi}-u_{\mathrm{mec}}-u_{\mathrm{dif}} \leq 0, \tag{S-8}
\end{equation*}
$$

where $u_{\text {mec }}$ and $u_{\text {dif }}$ denote works (per unit volume in the initial state and unit time) produced by stresses and diffusion of solvent molecules.

The specific mechanical work is determined by the conventional formula

$$
\begin{equation*}
u_{\mathrm{mec}}=J \boldsymbol{\Sigma}: \mathbf{D} \tag{S-9}
\end{equation*}
$$

where $\boldsymbol{\Sigma}$ is the Cauchy stress tensor, and

$$
\begin{equation*}
J=\operatorname{det} \mathbf{F} \tag{S-10}
\end{equation*}
$$

The specific work produced by solvent transport is determined by

$$
\begin{equation*}
u_{\mathrm{dif}}=\mu \dot{C}_{\mathrm{f}}+\bar{u}_{\mathrm{dif}} \tag{S-11}
\end{equation*}
$$

with

$$
\begin{equation*}
\bar{u}_{\text {dif }} \geq 0 . \tag{S-12}
\end{equation*}
$$

Eq. (S-8) is satisfied when the functions C_{f} and \mathbf{F} are connected by the molecular incompressibility condition (3). To account for this relation, we differentiate Eq. (3) with respect to time and find that

$$
\begin{equation*}
\dot{C}_{\mathrm{f}} v-J \mathbf{I}: \mathbf{D}=0 \tag{S-13}
\end{equation*}
$$

We multiplying Eq. (S-13) by an arbitrary function Π (pressure treated as a Lagrange multiplier) and add the result to Eq. (S-8). Using Eqs. (S-6), (S-9) and (S-11), we arrive at

$$
\begin{equation*}
(K+\Pi v-\mu) \dot{C}_{\mathrm{f}}+[2 \mathbf{K}-J(\boldsymbol{\Sigma}+\Pi \mathbf{I})]: \mathbf{D}-\bar{u}_{\mathrm{dif}} \leq 0 \tag{S-14}
\end{equation*}
$$

Keeping in mind that C_{f} and \mathbf{D} are arbitrary functions and using Eq. (S-12), we conclude that inequality (S-14) is fulfilled, provided that the chemical potential μ of water molecules reads

$$
\begin{equation*}
\mu=\mu^{0}+k_{\mathrm{B}} T_{0} \bar{\mu}, \quad \bar{\mu}=\ln \frac{Q}{1+Q}+\frac{1}{1+Q}+\frac{\chi}{(1+Q)^{2}}+\frac{\Pi v}{k_{\mathrm{B}} T_{0}}, \tag{S-15}
\end{equation*}
$$

and the Cauchy stress tensor $\boldsymbol{\Sigma}$ is given by

$$
\begin{equation*}
\boldsymbol{\Sigma}=-\Pi \mathbf{I}+\frac{2}{1+Q} \sum_{m=1}^{2}\left[\frac{\partial W_{m}}{\partial I_{\mathrm{e} 1}^{(m)}} \mathbf{B}_{\mathrm{e}}^{(m)}-I_{\mathrm{e} 3}^{(m)} \frac{\partial W_{m}}{\partial I_{\mathrm{e} 2}^{(m)}}\left(\mathbf{B}_{\mathrm{e}}^{(m)}\right)^{-1}+\left(I_{\mathrm{e} 2}^{(m)} \frac{\partial W_{m}}{\partial I_{\mathrm{e} 2}}+I_{\mathrm{e} 3}^{(m)} \frac{\partial W_{m}}{\partial I_{\mathrm{e} 3}^{(m)}}\right) \mathbf{I}\right], \tag{S-16}
\end{equation*}
$$

where $Q=C_{\mathrm{f}} v$ stands for degree of swelling.

Eqs. (S-15) and (S-16) serve as the constitutive equations for the mechanical response and swelling of a TR gel in water. Adopting the neo-Hookean expressions (9) for the functions W_{m}, we present Eq. (S-16) in the form

$$
\begin{equation*}
\boldsymbol{\Sigma}=-\Pi \mathbf{I}+\frac{1}{1+Q}\left[G_{1}\left(\mathbf{B}_{\mathrm{e}}^{(1)}-\mathbf{I}\right)+G_{2}\left(\mathbf{B}_{\mathrm{e}}^{(2)}-\mathbf{I}\right)\right], \tag{S-17}
\end{equation*}
$$

where G_{1} and G_{2} denote the elastic moduli.
We now analyze unconstrained equilibrium swelling of a TR gel in a water bath with a fixed temperature T. Pressure in the bath is disregarded,

$$
\begin{equation*}
\Pi^{\text {bath }}=0 . \tag{S-18}
\end{equation*}
$$

Under equilibrium conditions, Q depends on temperature T only: $Q=Q(T)$. The deformation gradient reads

$$
\begin{equation*}
\mathbf{F}=\lambda \mathbf{I}, \tag{S-19}
\end{equation*}
$$

where the coefficient λ is calculated from Eq. (3),

$$
\begin{equation*}
\lambda=(1+Q)^{\frac{1}{3}} . \tag{S-20}
\end{equation*}
$$

Combining Eqs. (S-17), (S-19) and (S-20) and using Eq. (5), we find that

$$
\begin{equation*}
\boldsymbol{\Sigma}=\Sigma \mathbf{I}, \quad \Sigma=-\Pi+\frac{1}{1+Q}\left\{G_{1}\left[\left(\frac{1+Q}{1+Q_{0}}\right)^{\frac{2}{3}}-1\right]+G_{2}\left[(1+Q)^{\frac{2}{3}}-1\right]\right\} \tag{S-21}
\end{equation*}
$$

The Cauchy stress tensor $\boldsymbol{\Sigma}$ obeys the equilibrium equation

$$
\begin{equation*}
\nabla \cdot \Sigma=0 \tag{S-22}
\end{equation*}
$$

where $\boldsymbol{\nabla}$ stands for the gradient in the actual state, and the boundary condition at the surface of a gel sample

$$
\begin{equation*}
\mathbf{n} \cdot \boldsymbol{\Sigma}=0 \tag{S-23}
\end{equation*}
$$

where \mathbf{n} is the unit normal vector. Combining Eqs. (S-21) to (S-23), we conclude that

$$
\Sigma=0 .
$$

Inserting Eq. (S-21) into this equality and using Eq. (5), we find that

$$
\begin{equation*}
\Pi=\frac{1}{1+Q}\left\{G_{1}\left[\left(\frac{1+Q}{1+Q_{0}}\right)^{\frac{2}{3}}-1\right]+G_{2}\left[(1+Q)^{\frac{2}{3}}-1\right]\right\} . \tag{S-24}
\end{equation*}
$$

The chemical potential of water molecules inside a gel is determined by Eq. (S-15). Its chemical potential in the bath is given by the same equality where the terms describing interactions between water molecules and segments of chains are neglected,

$$
\begin{equation*}
\mu^{\text {bath }}=\mu^{0} . \tag{S-25}
\end{equation*}
$$

Substituting expressions (S-15) and (S-25) into the equilibrium condition

$$
\begin{equation*}
\mu=\mu^{\mathrm{bath}} \tag{S-26}
\end{equation*}
$$

and using Eq. (S-24), we arrive at the equation

$$
\begin{equation*}
\ln \frac{Q}{1+Q}+\frac{1}{1+Q}+\frac{\chi}{(1+Q)^{2}}+\frac{g_{1}}{1+Q}\left[\left(\frac{1+Q}{1+Q_{0}}\right)^{\frac{2}{3}}-1\right]+\frac{g_{2}}{1+Q}\left[(1+Q)^{\frac{2}{3}}-1\right]=0 \tag{S-27}
\end{equation*}
$$

where

$$
g_{m}=\frac{G_{m} v}{k_{\mathrm{B}} T_{0}} \quad(m=1,2)
$$

are dimensionless elastic moduli.

2 Appendix B: Swelling in solution of additives

We now analyze the thermo-mechanical response of a TR gel in an aqueous (solvent-1) solution of an additive (solvent-2).

The specific energy of cosolvent molecules not interacting with each other and with segments of polymer chains is given by

$$
\begin{equation*}
\Psi_{1}=\mu_{1}^{0} C_{1}+\mu_{2}^{0} C_{2}, \tag{S-28}
\end{equation*}
$$

where C_{1}, C_{2} are concentrations of these molecules in the gel, and μ_{1}^{0}, μ_{2}^{0} are their chemical potentials when all mutual interactions are disregarded. Using Eqs. (21) and (24), we present Eq. (S-28) in the form

$$
\begin{equation*}
\Psi_{1}=\left(\mu_{1}^{0} \phi_{1}^{\text {bath }}+\mu_{2}^{0} \phi_{2}^{\text {bath }}\right) C_{\mathrm{f}} . \tag{S-29}
\end{equation*}
$$

For a TR gel in the swollen state, where hydrophobic segments do not form aggregates (serving as physical bonds between chains), the strain energy density of the polymer network reads

$$
\begin{equation*}
\Psi_{2}=W_{1}\left(I_{\mathrm{el}}^{(1)}, I_{\mathrm{e} 2}^{(1)}, I_{\mathrm{e} 3}^{(1)}\right) . \tag{S-30}
\end{equation*}
$$

The specific energy of interaction between segments of chains and cosolvent molecules is determined by Eq. (22),

$$
\begin{align*}
\Psi_{\text {int }}= & k_{\mathrm{B}} T_{0} C_{\mathrm{f}}\left[\ln \frac{C_{\mathrm{f}} v}{1+C_{\mathrm{f}} v}+\frac{\chi_{13} \phi_{1}^{\text {bath }}+\chi_{23} \phi_{2}^{\text {bath }}+\chi_{12} \phi_{1}^{\text {bath }} \phi_{2}^{\text {bath }} C_{\mathrm{f}} v}{1+C_{\mathrm{f}} v}\right. \\
& \left.+\left(\phi_{1}^{\text {bath }} \ln \phi_{1}^{\text {bath }}+\phi_{2}^{\text {bath }} \ln \phi_{2}^{\text {bath }}\right)\right] . \tag{S-31}
\end{align*}
$$

The specific Helmholtz free energy (per unit volume in the initial state) Ψ of a TR gel in a binary solution is given by Eq. (6),

$$
\begin{align*}
\Psi= & {\left[\left(\mu_{1}^{0} \phi_{1}^{\text {bath }}+\mu_{2}^{0} \phi_{2}^{\text {bath }}\right)+k_{\mathrm{B}} T_{0}\left(\phi_{1}^{\text {bath }} \ln \phi_{1}^{\text {bath }}+\phi_{2}^{\text {bath }} \ln \phi_{2}^{\text {bath }}+\chi_{12} \phi_{1}^{\text {bath }} \phi_{2}^{\text {bath }}\right)\right] C_{\mathrm{f}} } \\
& +k_{\mathrm{B}} T_{0} C_{\mathrm{f}}\left(\ln \frac{C_{\mathrm{f}} v}{1+C_{\mathrm{f}} v}+\frac{\chi_{*}}{1+C_{\mathrm{f}} v}\right)+W_{1}\left(I_{\mathrm{e} 1}^{(1)}, I_{\mathrm{e} 2}^{(1)}, I_{\mathrm{e} 3}^{(1)}\right), \tag{S-32}
\end{align*}
$$

where

$$
\begin{equation*}
\chi_{*}=\chi_{13} \phi_{1}^{\text {bath }}+\chi_{23} \phi_{2}^{\text {bath }}-\chi_{12} \phi_{1}^{\text {bath }} \phi_{2}^{\text {bath }} . \tag{S-33}
\end{equation*}
$$

Differentiating Eq. (S-33) with respect to time (under the assumption that χ_{*} is independent of C_{f}), we find that

$$
\begin{align*}
\dot{W}= & {\left[\left(\mu_{1}^{0} \phi_{1}^{\text {bath }}+\mu_{2}^{0} \phi_{2}^{\text {bath }}\right)+k_{\mathrm{B}} T_{0}\left(\phi_{1}^{\text {bath }} \ln \phi_{1}^{\text {bath }}+\phi_{2}^{\text {bath }} \ln \phi_{2}^{\text {bath }}+\chi_{12} \phi_{1}^{\text {bath }} \phi_{2}^{\text {bath }}\right)\right.} \\
& \left.+k_{\mathrm{B}} T_{0}\left(\ln \frac{C_{\mathrm{f}} v}{1+C_{\mathrm{f}} v}+\frac{1}{1+C_{\mathrm{f}} v}+\frac{\chi_{*}}{\left(1+C_{\mathrm{f}} v\right)^{2}}\right)\right] \dot{C}_{\mathrm{f}} \\
& +\left(\frac{\partial W_{1}}{\partial I_{\mathrm{e} 1}^{(1)}} \dot{\mathrm{e}}_{\mathrm{e} 1}^{(1)}+\frac{\partial W_{1}}{\partial I_{\mathrm{e} 2}^{(1)}} \dot{\mathrm{e}}_{\mathrm{e} 2}^{(1)}+\frac{\partial W_{1}}{\partial I_{\mathrm{e} 3}^{(1)}} \dot{I}_{\mathrm{e} 3}^{(1)}\right) . \tag{S-34}
\end{align*}
$$

It follows from Eqs. (S-3) and (S-34) that

$$
\begin{equation*}
\dot{W}=K \dot{C}_{\mathrm{f}}+2 \mathbf{K}: \mathbf{D} \tag{S-35}
\end{equation*}
$$

where

$$
\begin{align*}
K= & \left(\mu_{1}^{0} \phi_{1}^{\text {bath }}+\mu_{2}^{0} \phi_{2}^{\text {bath }}\right)+k_{\mathrm{B}} T_{0}\left(\phi_{1}^{\text {bath }} \ln \phi_{1}^{\text {bath }}+\phi_{2}^{\text {bath }} \ln \phi_{2}^{\text {bath }}+\chi_{12} \phi_{1}^{\text {bath }} \phi_{2}^{\text {bath }}\right) \\
& +k_{\mathrm{B}} T_{0}\left[\ln \frac{C_{\mathrm{f}} v}{1+C_{\mathrm{f}} v}+\frac{1}{1+C_{\mathrm{f}} v}+\frac{\chi_{*}}{\left(1+C_{\mathrm{f}} v\right)^{2}}\right] \\
\mathbf{K}= & \frac{\partial W_{1}}{\partial I_{\mathrm{e} 1}^{(1)}} \mathbf{B}_{\mathrm{e}}^{(1)}-I_{\mathrm{e} 3}^{(1)} \frac{\partial W_{1}}{\partial I_{\mathrm{e} 2}^{(1)}}\left(\mathbf{B}_{\mathrm{e}}^{(1)}\right)^{-1}+\left(I_{\mathrm{e} 2}^{(1)} \frac{\partial W_{1}}{\partial I_{\mathrm{e} 2}}+I_{\mathrm{e} 3}^{(1)} \frac{\partial W_{1}}{\partial I_{\mathrm{e} 3}^{(1)}}\right) \mathbf{I} . \tag{S-36}
\end{align*}
$$

Substituting Eq. (S-36) into the free energy imbalance inequality (S-8) and repeating the transformations performed in Appendix A, we arrive at the formula for the chemical potential of solvent molecules in the gel

$$
\begin{equation*}
\mu=\left(\mu_{1}^{0} \phi_{1}^{\text {bath }}+\mu_{2}^{0} \phi_{2}^{\text {bath }}\right)+k_{\mathrm{B}} T_{0}\left(\phi_{1}^{\text {bath }} \ln \phi_{1}^{\text {bath }}+\phi_{2}^{\text {bath }} \ln \phi_{2}^{\text {bath }}+\chi_{12} \phi_{1}^{\text {bath }} \phi_{2}^{\text {bath }}\right)+k_{\mathrm{B}} T_{0} \bar{\mu} \tag{S-37}
\end{equation*}
$$

with

$$
\begin{equation*}
\bar{\mu}=\ln \frac{Q}{1+Q}+\frac{1}{1+Q}+\frac{\chi_{*}}{(1+Q)^{2}}+\frac{\Pi v}{k_{\mathrm{B}} T_{0}}, \tag{S-38}
\end{equation*}
$$

and the stress-strain relation for the Cauchy stress tensor $\boldsymbol{\Sigma}$

$$
\begin{equation*}
\boldsymbol{\Sigma}=-\Pi \mathbf{I}+\frac{2}{1+Q}\left[\frac{\partial W_{1}}{\partial I_{\mathrm{e} 1}^{(1)}} \mathbf{B}_{\mathrm{e}}^{(1)}-I_{\mathrm{e} 3}^{(1)} \frac{\partial W_{1}}{\partial I_{\mathrm{e} 2}^{(1)}}\left(\mathbf{B}_{\mathrm{e}}^{(1)}\right)^{-1}+\left(I_{\mathrm{e} 2}^{(1)} \frac{\partial W_{1}}{\partial I_{\mathrm{e} 2}}+I_{\mathrm{e} 3}^{(1)} \frac{\partial W_{1}}{\partial I_{\mathrm{e} 3}^{(1)}}\right) \mathbf{I}\right] . \tag{S-39}
\end{equation*}
$$

When the functions W_{1} is described by the neo-Hookean expression (9), Eq. (S-39) is simplified,

$$
\begin{equation*}
\boldsymbol{\Sigma}=-\Pi \mathbf{I}+\frac{G_{1}}{1+Q}\left(\mathbf{B}_{\mathrm{e}}^{(1)}-\mathbf{I}\right) \tag{S-40}
\end{equation*}
$$

Under unconstrained equilibrium swelling of a TR gel in an aqueous solution of an additive, osmotic pressure Π in the gel is determined by an analog of Eq. (S-24),

$$
\begin{equation*}
\Pi=\frac{G_{1}}{1+Q}\left[\left(\frac{1+Q}{1+Q_{0}}\right)^{\frac{2}{3}}-1\right], \tag{S-41}
\end{equation*}
$$

the chemical potential of solvent molecules inside the gel is given by Eq. (S-37), and their chemical potential in the bath is given by the same equality where the terms describing interactions between solvent molecules and segments of chains are neglected,

$$
\begin{equation*}
\mu^{\text {bath }}=\left(\mu_{1}^{0} \phi_{1}^{\text {bath }}+\mu_{2}^{0} \phi_{2}^{\text {bath }}\right)+k_{\mathrm{B}} T_{0}\left(\phi_{1}^{\text {bath }} \ln \phi_{1}^{\text {bath }}+\phi_{2}^{\text {bath }} \ln \phi_{2}^{\text {bath }}+\chi_{12} \phi_{1}^{\text {bath }} \phi_{2}^{\text {bath }}\right) . \tag{S-42}
\end{equation*}
$$

Substituting expression (S-37) and (S-42) into the equilibrium condition (S-26), and using Eqs. (S-38) and (S-41), we find that

$$
\begin{equation*}
\ln \frac{Q}{1+Q}+\frac{1}{1+Q}+\frac{\chi_{*}}{(1+Q)^{2}}+\frac{g_{1}}{1+Q}\left[\left(\frac{1+Q}{1+Q_{0}}\right)^{\frac{2}{3}}-1\right]=0 \tag{S-43}
\end{equation*}
$$

Eq. (S-43) with χ_{*} given by Eq. (S-33) provides the governing equation for equilibrium degree of swelling Q of a TR gel in an aqueous solution of additives.

3 Appendix C: Partitioning of additives

The specific free energy of molecules of solvent-1 and solvent-2 not interacting with each other and with segments of polymer chains is given by Eq. (S-28), where C_{1}, C_{2} denote concentration of molecules of solvent-1 and solvent-2 in the gel, and μ_{1}^{0}, μ_{2}^{0} are chemical potentials of these molecules when all mutual interactions are disregarded.

The specific energy of the polymer network is determined by Eq. (S-30), where W_{1} is the specific mechanical energy stored in polymer chains of the covalently cross-linked network.

The specific energy of interaction between segments of chains and cosolvent molecules is determined by Eq. (2),

$$
\Psi_{\text {int }}=k_{\mathrm{B}} T_{0}\left[\left(C_{1} \ln \frac{C_{1} v}{1+C_{\mathrm{f}} v}+C_{2} \ln \frac{C_{2} v}{1+C_{\mathrm{f}} v}\right)+\frac{\chi_{13} C_{1}+\chi_{23} C_{2}+\chi_{12} C_{1} C_{2} v}{1+C_{\mathrm{f}} v}\right] .
$$

The Helmholtz free energy of a TR gel (per unit volume in the initial configuration) equals the sum of the above three terms, see Eq. (6), which implies that

$$
\begin{align*}
\Psi= & \mu_{1}^{0} C_{1}+\mu_{2}^{0} C_{2}+W_{1}\left(I_{\mathrm{e} 1}^{(1)}, I_{\mathrm{e} 2}^{(1)}, I_{\mathrm{e} 3}^{(1)}\right)+k_{\mathrm{B}} T_{0}\left[C_{1} \ln \frac{C_{1} v}{1+\left(C_{1}+C_{2}\right) v}\right. \\
& \left.+C_{2} \ln \frac{C_{2} v}{1+\left(C_{1}+C_{2}\right) v}+\frac{\chi_{13} C_{1}+\chi_{23} C_{2}+\chi_{12} C_{1} C_{2} v}{1+\left(C_{1}+C_{2}\right) v}\right] \tag{S-44}
\end{align*}
$$

Differentiating Eq. (S-44) with respect to time and using Eq. (S-3), we find that

$$
\begin{equation*}
\dot{\Psi}=K_{1} \dot{C}_{1}+K_{2} \dot{C}_{2}+2 \mathbf{K}: \mathbf{D} . \tag{S-45}
\end{equation*}
$$

Here

$$
\begin{align*}
K_{1} & =\mu_{1}^{0}+k_{\mathrm{B}} T_{0}\left[\ln \phi_{1}+\phi_{\mathrm{n}}+\chi_{13} \phi_{\mathrm{n}}^{2}+\phi_{2}\left(\left(\chi_{13}-\chi_{23}+\chi_{12}\right) \phi_{\mathrm{n}}+\chi_{12} \phi_{2}\right)\right], \\
K_{2} & =\mu_{2}^{0}+k_{\mathrm{B}} T_{0}\left[\ln \phi_{2}+\phi_{\mathrm{n}}+\chi_{23} \phi_{\mathrm{n}}^{2}+\phi_{1}\left(\left(\chi_{23}-\chi_{13}+\chi_{12}\right) \phi_{\mathrm{n}}+\chi_{12} \phi_{1}\right)\right], \\
\mathbf{K} & =\frac{\partial W_{1}}{\partial I_{\mathrm{e} 1}^{(1)}} \mathbf{B}_{\mathrm{e}}^{(1)}-I_{\mathrm{e} 3}^{(1)} \frac{\partial W_{1}}{\partial I_{\mathrm{e} 2}^{(1)}}\left(\mathbf{B}_{\mathrm{e}}^{(1)}\right)^{-1}+\left(I_{\mathrm{e} 2}^{(1)} \frac{\partial W_{1}}{\partial I_{\mathrm{e} 2}^{(1)}}+I_{\mathrm{e} 3}^{(1)} \frac{\partial W_{1}}{\partial I_{\mathrm{e} 3}^{(1)}}\right) \mathbf{I}, \tag{S-46}
\end{align*}
$$

and we use notation (20),

$$
\begin{equation*}
\phi_{1}=\frac{C_{1} v}{1+C_{\mathrm{f}} v}, \quad \phi_{2}=\frac{C_{2} v}{1+C_{\mathrm{f}} v}, \quad \phi_{\mathrm{n}}=\frac{1}{1+C_{\mathrm{f}} v} \tag{S-47}
\end{equation*}
$$

with

$$
C_{\mathrm{f}}=C_{1}+C_{2} .
$$

We now substitute Eq. (S-45) into the free energy imbalance inequality (S-8) with $u_{\text {mec }}$ given by Eq. (S-9) and $u_{\text {dif }}$ determined by the formula

$$
\begin{equation*}
u_{\mathrm{dif}}=\mu_{1} \dot{C}_{1}+\mu_{2} \dot{C}_{2}+\bar{u}_{\mathrm{dif}} . \tag{S-48}
\end{equation*}
$$

Repeating the transformations described in Appendix A, and adopting the neo-Hookean expression (9) for the elastic potential W_{1}, we arrive at Eq. (S-39) for the Cauchy stress
tensor and the following relations for the chemical potentials of solvent- 1 and solvent- 2 molecules:

$$
\begin{equation*}
\mu_{1}=\mu_{1}^{0}+k_{\mathrm{B}} T_{0} \bar{\mu}_{1}, \quad \mu_{2}=\mu_{2}^{0}+k_{\mathrm{B}} T_{0} \bar{\mu}_{2}, \tag{S-49}
\end{equation*}
$$

where

$$
\begin{align*}
& \bar{\mu}_{1}=\ln \phi_{1}+\phi_{\mathrm{n}}+\chi_{13} \phi_{\mathrm{n}}^{2}+\left(\chi_{13}-\chi_{23}+\chi_{12}\right) \phi_{2} \phi_{n}+\chi_{12} \phi_{2}^{2}+\frac{\Pi v}{k_{\mathrm{B}} T_{0}} \\
& \bar{\mu}_{2}=\ln \phi_{2}+\phi_{\mathrm{n}}+\chi_{23} \phi_{\mathrm{n}}^{2}+\left(\chi_{23}-\chi_{13}+\chi_{12}\right) \phi_{1} \phi_{n}+\chi_{12} \phi_{1}^{2}+\frac{\Pi v}{k_{\mathrm{B}} T_{0}} \tag{S-50}
\end{align*}
$$

The chemical potentials of solvent-1 and solvent- 2 molecules in the bath are determined by Eqs. (S-49) and (S-50), where all terms describing interactions between the polymer network and cosolvents are disregarded:

$$
\begin{equation*}
\mu_{1}^{\text {bath }}=\mu_{1}^{0}+k_{\mathrm{B}} T_{0} \bar{\mu}_{1}^{\text {bath }}, \quad \mu_{2}^{\text {bath }}=\mu_{2}^{0}+k_{\mathrm{B}} T_{0} \bar{\mu}_{2}^{\text {bath }} \tag{S-51}
\end{equation*}
$$

with

$$
\begin{equation*}
\bar{\mu}_{1}^{\text {bath }}=\ln \phi_{1}^{\text {bath }}+\chi_{12}\left(\phi_{2}^{\text {bath }}\right)^{2}, \quad \bar{\mu}_{2}^{\text {bath }}=\ln \phi_{2}^{\text {bath }}+\chi_{12}\left(\phi_{1}^{\text {bath }}\right)^{2} . \tag{S-52}
\end{equation*}
$$

Under equilibrium swelling of a TR gel in a bath with volume fractions of cosolvents $\phi_{1}^{\text {bath }}$ and $\phi_{2}^{\text {bath }}$, pressure Π is determined by Eq. (S-41), and the quantities ϕ_{1}, ϕ_{2} and ϕ_{n} are found from the equations

$$
\begin{equation*}
\mu_{1}=\mu_{1}^{\text {bath }}, \quad \mu_{2}=\mu_{2}^{\text {bath }} \tag{S-53}
\end{equation*}
$$

and the condition

$$
\begin{equation*}
\phi_{1}+\phi_{2}+\phi_{\mathrm{n}}=1 \tag{S-54}
\end{equation*}
$$

Substitution of expressions (S-49)-(S-52) into Eq. (S-53) results in the nonlinear equations

$$
\begin{align*}
& \ln \phi_{1}+\phi_{\mathrm{n}}+\chi_{13} \phi_{\mathrm{n}}^{2}+\left(\chi_{13}-\chi_{23}+\chi_{12}\right) \phi_{2} \phi_{n}+\chi_{12} \phi_{2}^{2}+g_{1} \phi_{\mathrm{n}}\left[\left(\frac{\phi_{\mathrm{n}}}{\phi_{\mathrm{n} 0}}\right)^{-\frac{2}{3}}-1\right] \\
& =\ln \phi_{1}^{\text {bath }}+\chi_{12}\left(\phi_{2}^{\text {bath }}\right)^{2}, \\
& \ln \phi_{2}+\phi_{\mathrm{n}}+\chi_{23} \phi_{\mathrm{n}}^{2}+\left(\chi_{23}-\chi_{13}+\chi_{12}\right) \phi_{1} \phi_{n}+\chi_{12} \phi_{1}^{2}+g_{1} \phi_{\mathrm{n}}\left[\left(\frac{\phi_{\mathrm{n}}}{\phi_{\mathrm{n} 0}}\right)^{-\frac{2}{3}}-1\right] \\
& =\ln \phi_{2}^{\text {bath }}+\chi_{12}\left(\phi_{1}^{\text {bath }}\right)^{2}, \tag{S-55}
\end{align*}
$$

where $\phi_{\mathrm{n} 0}=\left(1+Q_{0}\right)^{-1}$.

Subtracting the last equality in Eq. (S-55) from the first one and using Eq. (S-54), we find, after simple algebra, that

$$
\begin{equation*}
\ln \frac{\phi_{1}}{\phi_{2}}+\left(\chi_{13}-\chi_{23}\right) \phi_{\mathrm{n}}+\chi_{12}\left(\phi_{2}-\phi_{1}\right)=\ln \frac{\phi_{1}^{\text {bath }}}{\phi_{2}^{\text {bath }}}+\chi_{12}\left(\phi_{2}^{\text {bath }}-\phi_{1}^{\text {bath }}\right) . \tag{S-56}
\end{equation*}
$$

It follows from Eq. (S-47) that

$$
\begin{equation*}
\phi_{1}=\frac{\varphi_{1} Q}{1+Q}, \quad \phi_{2}=\frac{\varphi_{2} Q}{1+Q}, \quad \phi_{\mathrm{n}}=\frac{1}{1+Q} . \tag{S-57}
\end{equation*}
$$

Insertion of Eq. (S-57) into Eq. (S-56) implies that

$$
\ln \frac{\varphi_{1}}{\varphi_{2}}+\frac{\chi_{13}-\chi_{23}}{1+Q}+\chi_{12}\left(\varphi_{2}-\varphi_{1}\right) \frac{Q}{1+Q}=\ln \frac{\phi_{1}^{\text {bath }}}{\phi_{2}^{\text {bath }}}+\chi_{12}\left(\phi_{2}^{\text {bath }}-\phi_{1}^{\text {bath }}\right) .
$$

Bearing in mind that

$$
\varphi_{1}=1-\varphi_{2}, \quad \phi_{1}^{\text {bath }}=1-\phi_{2}^{\text {bath }}
$$

we conclude that

$$
\begin{equation*}
\ln \frac{1-\varphi_{2}}{\varphi_{2}}+\frac{\chi_{13}-\chi_{23}}{1+Q}+\chi_{12}\left(2 \varphi_{2}-1\right) \frac{Q}{1+Q}=\ln \frac{1-\phi_{2}^{\text {bath }}}{\phi_{2}^{\text {bath }}}+\chi_{12}\left(2 \phi_{2}^{\text {bath }}-1\right) \tag{S-58}
\end{equation*}
$$

It follows from Eqs. (23) and (S-58) that

$$
\begin{equation*}
\ln \frac{1-P \phi_{2}^{\text {bath }}}{P\left(1-\phi_{2}^{\text {bath }}\right)}+\frac{\chi_{13}-\chi_{23}+\chi_{12}}{1+Q}+2 \chi_{12} \phi_{2}^{\text {bath }}\left(\frac{P Q}{1+Q}-1\right)=0 \tag{S-59}
\end{equation*}
$$

At small volume fractions of additives in the bath, $\phi_{2}^{\text {bath }} \ll 1$, Eq. (S-59) is simplified,

$$
\ln P=\frac{\chi_{13}-\left(\chi_{23}-\chi_{12}\right)}{1+Q}
$$

Combination of this equality with Eq. (29) results in the formula

$$
\begin{equation*}
P=\exp \left(\frac{\chi_{13}-K}{1+Q}\right) \tag{S-60}
\end{equation*}
$$

Keeping in mind that for a TR gel,

$$
\chi_{13}=\chi_{0}+\chi_{1} T
$$

we find from Eq. (S-60) that

$$
\begin{equation*}
P=\exp \left(\frac{\chi_{0}+\chi_{1} T-K}{1+Q}\right) \tag{S-61}
\end{equation*}
$$

Tables

Table S-1: Material parameters for PNIPA gel in water and NaCl solution (Fig. S-1A,B)

	$T_{\mathrm{c}}{ }^{\circ} \mathrm{C}$	β_{2}	\bar{g}_{2} / g_{1}
Water	32.0	1.23	7.7
NaCl solution	24.0	1.23	7.9

Table S-2: Material parameters for PNIPA gel in water (Fig. S-2A)

χ_{0}	χ_{1}	$\chi_{\max }$	Q_{0}	g_{1}	\bar{g}_{2}	β_{2}
-2.098	0.079	0.555	12.81	0.024	4.5	0.1

Table S-3: Material parameters for PNIPA gel in water (Fig. 1-A)

χ_{0}	χ_{1}	$\chi_{\max }$	Q_{0}	g_{1}	\bar{g}_{2}	β_{2}
-2.098	0.079	0.563	18.5	0.011	0.13	0.1

Table S-4: Parameter K for PNIPA gel in aqueous solutions of saccharides (Figs. 1-B,C,D)

Saccharides	K
Galactose	8.3
Glucose	7.0
Sucrose	4.8

Figures

Figure S-1: The ratio of Young's moduli $R=E(T) / E\left(T_{0}\right)$ with $T_{0}=10{ }^{\circ} \mathrm{C}$ versus temperature T. Circles: experimental data [50] on PNIPA gel in pure water (A) and aqueous solution of NaCl with concentration $0.5 \mathrm{~mol} / \mathrm{L}(\mathrm{B})$. Solid lines: results of simulation.

Figure S-2: A - Degree of swelling Q versus temperature T. Circles: experimental data [53] on PNIPA gel prepared by irradiation of polymer solution with $\Gamma=20 \mathrm{kGy}$. Solid line: results of simulation. B - Parameter χ versus temperature T. Circles: treatment of observations. Solid line: results of simulation.

Figure S-3: A - Parameter χ versus temperature T. Circles: treatment of observations [53] on PNIPA gel. Solid line: approximation of the data by the equation $\chi=\chi_{0}-E_{a} /(R T)$ with $E_{\mathrm{a}}=59.3 \mathrm{~kJ} / \mathrm{mol}$. B - Viscosity B-coefficient versus temperature T. Symbols: experimental data [60] on aqueous solutions of glucose ($(\circ$) and sucrose ((\bullet). Solid lines: approximation of the data by the Arrhenius law with $E_{\mathrm{a}}=5.0$ (glucose) and 3.0 (sucrose) $\mathrm{kJ} / \mathrm{mol}$.

Figure S-4: Degree of swelling Q versus temperature T. Circles: experimental data [8] on PNIPA gel in aqueous solutions of galactose with volume fractions $\phi_{2}^{\text {bath }}=0.305(\mathrm{~A}), 0.112$ (B) and 0.213 (C). Solid lines: predictions of the model.

Figure S-5: Degree of swelling Q versus temperature T. Circles: experimental data [8] on PNIPA gel in aqueous solutions of sucrose with volume fractions $\phi_{2}^{\text {bath }}=0.061$ (A), 0.225 (B) and 0.301 (C). Solid lines: predictions of the model.

Figure S-6: A - Degree of swelling Q versus temperature T. Symbols: results of simulation for PNIPA gel in aqueous solutions of galactose with various volume fractions $\phi_{2}^{\text {bath }}$. $\mathrm{B}-$ Volume phase transition temperature T_{c} versus volume fraction of galactose in the bath $\phi_{2}^{\text {bath }}$. Circles: experimental data [65]. Solid line: predictions of the model.

Figure S-7: A - Degree of swelling Q versus temperature T. Symbols: results of simulation for PNIPA gel in aqueous solutions of sucrose with various volume fractions $\phi_{2}^{\text {bath }}$. B Volume phase transition temperature T_{c} versus volume fraction of sucrose in the bath $\phi_{2}^{\text {bath }}$. Circles: experimental data [67]. Solid line: predictions of the model.

Figure S-8: A,B - Coefficient K versus hydration number n. Circles: experimental data [68,69] (A) and [70] (B). Solid lines: results of simulation. C - Volume phase transition temperature T_{c} versus volume fraction of mannose in the bath $\phi_{2}^{\text {bath }}$. Circles: experimental data [65]. Solid line: predictions of the model.

